skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do I Fit In? Examining Student Perceptions of Belonging and Comfort in University Makerspaces
The growing popularity of progressive education pedagogies combined with the continued rise of the maker movement has propelled knowledge and interest in makerspaces across education. As a result, makerspaces have become a common sight on college campuses around the world. These spaces offer students a unique opportunity to apply the hard and soft skills learned in the classroom to projects with real consequences. Students learn to take ownership of their work and experiment and iterate until they are proud of their results. Through this process they grow in design self-efficacy, innovation, and collaboration skills. Makerspaces are a powerful tool in the hands of university professors, but not all students benefit from them equally. Many students still face real or perceived barriers to entry caused in part by a lack of comfort and confidence in the space. This study seeks to examine students’ sense of belonging at a university makerspace and determine how gender, major, study locations, and classes affect this sense. Online surveys were distributed to students who used the makerspace in Fall 2022 and Spring 2023. Students answered a series of Likert style questions about how they feel in the space and statistical tests were used to determine correlation and significance of the results. It was found that sense of belonging in the space overall was high, but that females, non-mechanical engineering majors, and students who did not study in the space reported statistically lower sense of comfort. Suggestions are given to makerspace administrators of how to address and avoid these gaps in belonging and make the space more inclusive and welcoming to all students.  more » « less
Award ID(s):
2013547
PAR ID:
10498877
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
7th International Symposium on Academic Makerspaces (ISAM)
Date Published:
Page Range / eLocation ID:
1-5
Format(s):
Medium: X
Location:
Pittsburgh, PA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Recognizing the value of engagement in learning, recent engineering education initiatives have worked to encourage all types of students to pursue engineering while also facilitating the construction of makerspaces on university campuses. Makerspaces have the potential to engage a broader range of students by providing unique and personalized pathways into engineering. While this aims to improve the quality of an engineer’s education, the reality settles in when we begin to question whether these makerspaces are, in fact, encouraging learning in engineering for all types of students. In this work, we focus on investigating how a university makerspace affords learning for female students. We implemented an in-depth phenomenologically based interviewing approach which involved a series of three 90-minute semi-structured interviews with six highly engaged female undergraduate students involved in different makerspaces at a single university. The purpose of these interviews was to engage the students in their experiences with the makerspaces and the projects that they work on in this space, so as to inform how these spaces afford learning, specifically the impact on female student learning. All interviews were conducted by the same female graduate student. This work focuses on the second interviews of two females who had student worker roles in their respective makerspaces on campus. All of the interviews for these two females were transcribed resulting in 180 pages of single-spaced transcriptions, and the second interviews were analyzed through two phases of qualitative data analysis. Types of learning emerged in multiple forms and are presented via case studies of each female participant. For case one, these types of learning include machines learning, social learning, design learning, and self-learning. In the second case, the types of learning are tool learning, resourceful learning, space learning, and management learning. These types of learning are then further discussed according to engineering education pedagogy and implications. Makerspaces are often labeled as “open, learning environments,” and this work demonstrates how these spaces facilitate unique forms of learning that engage these women in the makerspace. 
    more » « less
  2. Abstract University makerspaces have been touted as a possible avenue for improving student learning, engagement, retention, and creativity. As their popularity has increased worldwide, so has the amount of research investigating their establishment, management, and uses. There have, however, been very few studies that use empirical data to evaluate how these spaces are impacting the people using them. This study of three university makerspaces measures engineering design (ED) self-efficacy and how it is correlated with involvement in the makerspaces, along with student demographics. The three university makerspaces include a relatively new makerspace at a Hispanic-serving university in the southwestern US, makerspaces at an eastern liberal arts university with an engineering program that has been created within the last decade, and a makerspace at a large, research university in the southeast often considered to be one of the top programs in the US. Students at all three universities are surveyed to determine their involvement in their university's makerspace and how they perceive their own abilities in engineering design. The findings presented in this paper show a positive correlation between engineering design self-efficacy (EDSE) and involvement in academic makerspaces. Correlations are also seen between certain demographic factors and the percentage of students who choose to use the academic makerspace available to them. These findings provide crucial empirical evidence to the community on the self-efficacy of students who use makerspaces and provide support for universities to continue making these spaces available to their students. 
    more » « less
  3. Academic makerspaces represent an ideal opportunity to present engineering students with active, experiential learning opportunities that reinforce theoretical concepts through conceptual design and prototyping. When appropriately supported, experiential learning in makerspaces has the capacity to drive development of technical skills and positive self-efficacy among novice engineers. However, research suggests that students who identify as part of historically underrepresented groups (i.e. those who are not White and male) can experience makerspaces in ways that marginalize their success. Thus, care must be taken in makerspace design and operation to create an environment that has a positive impact on the success of all students. In this study, we consider the perceptions and experiences of women and underrepresented racial/ethnic minorities (URMs) in an academic makerspace at one large, research intensive institution. We surveyed 256 undergraduate mechanical engineering students to compare and contrast their self-efficacy, their perceptions of makerspace support, and their peer-to-peer interactions. We found that student self-efficacy for conceptual design and prototyping did not differ by race or gender. However, females reported they were more likely to have a positive experience in the makerspace when supported by a teaching assistant who was also female. Students who identified as URM were significantly more likely to report discomfort in working with peers in the makerspace. We anticipate the outcomes of this study will provide implications for faculty and staff makerspaces at other postsecondary institutions who aim to build an inclusive and accessible learning environment for all students. 
    more » « less
  4. Makerspaces have observed and speculated benefits for the students who frequent them. For example, previous studies have found that students who are involved in their campus’s makerspace tend to be more confident and less anxious when conducting engineering design tasks while gaining hands-on experience with machinery not obtained in their coursework. Recognizing the potential benefits of academic makerspaces, we aimed to capture what influences students to become involved in these spaces through a mixed-method study. A quantitative longitudinal study of students in a mechanical engineering program collected data on design self-efficacy, makerspace involvement, and user demographics through surveys conducted on freshmen, sophomores, and seniors. In this paper, the student responses from three semesters of freshmen level design classes are evaluated for involvement and self-efficacy based on whether or not a 3D modeling project requires the use of makerspace equipment. The study finds that students required to use the makerspace for the project were significantly more likely to become involved in the makerspace. These results inspired us to integrate a qualitative approach to examine how student involvement and exposure to the space are related. Using an in-depth phenomenologically based interviewing method, purposive sampling, and snowball sampling, six females, who have all made the conscious decision to engage in a university makerspace(s), participated in a three-series interview process. The interviews were transcribed and analyzed via emerging questions for categorical metrics and infographics of the student exposure and involvement in making and makerspaces. These findings are used to demonstrate 1) how students who do, or do not, seek out making activities may end up in the makerspace and 2) how student narratives resulting in high-makerspace involvement are impacted by prior experiences, classes, and friendships. 
    more » « less
  5. Over the past two decades, many studies have analyzed the extensive benefits of makerspaces towards student education, design-self efficacy, and community involvement. However, less work has been dedicated to examining the ways in which students interact within makerspaces. This study seeks to dive deeper into the patterns of tools that students are using and how this knowledge can inform makerspaces and make them more effective. Tool usage data was collected through end of semester surveys administered to students at two large public universities over the course of 5 semesters: Fall 2020, Spring 2021, Spring 2022, Fall 2022, and Spring 2023. The survey asked a variety of questions about prior makerspace experience, general and specific tool usage, and student demographics. The first three semesters of data were used to gain an understanding of how different student groups – defined based on categories such as major, demographic, or class taken – interact with various tools within the space. Combined semester analysis was used to understand how underrepresented minorities were utilizing the space while between semester analysis was used to see trends in makerspace usage over time. The onset of the COVID-19 pandemic at the start of the study provided ample opportunity to examine the effects of unprecedented disruptive events and the resulting restrictions on the health of makerspaces and student interactions. Results showed substantial differences in usage between schools and student groups as well as a decline in usage following the onset of COVID restrictions. In the final two semesters, a pilot study was conducted at both makerspaces to determine how hands-on, and tour-based workshops offered to students can be used to increase tool usage in makerspaces and more successfully welcome new students into the maker world. While there is insufficient data to make any conclusions from these interventions, they showed the potential for promising results if future work is performed. Finally, insights from this study are used to offer suggestions to makerspace administrators on how to address poor makerspace usage. 
    more » « less