skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topologically Frustrated Dynamical State of Polymers Trapped in Ideal Uniform Tetra-PEG Gels
When very long polymers are trapped into multiple entropic traps created by the meshes of host hydrogels, our recent discovery shows that the guest polymer chains are entropically frozen into a nondiffusive topologically frustrated dynamical state (TFDS) at intermediate confinements. Outside the confinement boundaries of the TFDS, the guest molecules diffuse, whereas in the TFDS regime, the center of mass diffusion coefficient is essentially zero due to the macromolecule being localized into long-lived metastable states with extreme free-energy barriers for the escape of the macromolecule. However, the segmental dynamics of the macromolecule is active with hierarchical dynamics. A key assumption to explain this hierarchical segmental dynamics of the macromolecule in the TFDS regime has been that the number of monomers in the various entropic traps is polydisperse. The validity of this assumption is tested in the present paper by experimentally investigating the segmental dynamics using the ideal tetra-PEG hydrogel as the host matrix and sodium poly(styrene sulfonate) as the guest macromolecule. We find that all features of TFDS previously observed using poly(acrylamide-co-acrylate) hydrogels with the polydisperse distribution of mesh size are recovered in the present system of uniform mesh size as well. Thus, the present study, with the chemical details different from those of our previous systems, adds credence to the universality of the phenomenon of TFDS. Furthermore, the present finding suggests that the polydispersity in the number of monomers in the various entropic traps must arise from conformational fluctuations emanating from the local exchange dynamics of segments among neighboring meshes.  more » « less
Award ID(s):
2309539
PAR ID:
10498924
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Macromolecules
Volume:
56
Issue:
23
ISSN:
0024-9297
Page Range / eLocation ID:
9389 to 9397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using fluorescence microscopy and single-particle tracking, we have directly observed the dynamics of λ-DNA trapped inside poly(acrylamide-co-acrylate) hydrogels under an externally applied electric field. Congruent with the recent discovery of the nondiffusive topologically frustrated dynamical state (TFDS) that emerges at intermediate confinements between the traditional entropic barrier and reptation regimes, we observe the immobility of λ-DNA in the absence of an electric field. The electrophoretic mobility of the molecule is triggered upon application of an electric field with strength above a threshold value Ec. The existence of the threshold value to elicit mobility is attributed to a large entropic barrier, arising from many entropic traps acting simultaneously on a single molecule. Using the measured Ec which depends on the extent of confinement, we have determined the net entropic barrier of up to 130 kBT, which is responsible for the long-lived metastable TFDS. The net entropic barrier from multiple entropic traps is nonmonotonic with the extent of confinement and tends to vanish at the boundaries of the TFDS with the single-entropic barrier regime at lower confinements and the reptation regime at higher confinements. We present an estimate of the mesh size of the hydrogel that switches off the nondiffusive TFDS and releases chin diffusion in the heavily entangled state. 
    more » « less
  2. Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application. 
    more » « less
  3. The single most intrinsic property of nonrigid polymer chains is their ability to adopt enormous numbers of chain conformations, resulting in huge conformational entropy. When such macromolecules move in media with restrictive spatial constraints, their trajectories are subjected to reductions in their conformational entropy. The corresponding free energy landscapes are interrupted by entropic barriers separating consecutive spatial domains which function as entropic traps where macromolecules can adopt their conformations more favorably. Movement of macromolecules by negotiating a sequence of entropic barriers is a common paradigm for polymer dynamics in restrictive media. However, if a single chain is simultaneously trapped by many entropic traps, it has recently been suggested that the macromolecule does not undergo diffusion and is localized into a topologically frustrated dynamical state, in apparent violation of Einstein’s theorem. Using fluorescently labeled λ-DNA as the guest macromolecule embedded inside a similarly charged hydrogel with more than 95% water content, we present direct evidence for this new state of polymer dynamics at intermediate confinements. Furthermore, using a combination of theory and experiments, we measure the entropic barrier for a single macromolecule as several tens of thermal energy, which is responsible for the extraordinarily long extreme metastability. The combined theory–experiment protocol presented here is a determination of single-molecule entropic barriers in polymer dynamics. Furthermore, this method offers a convenient general procedure to quantify the underlying free energy landscapes behind the ubiquitous phenomenon of movement of single charged macromolecules in crowded environments. 
    more » « less
  4. Abstract The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology. 
    more » « less
  5. Host–guest interactions have been increasingly explored for use in the dynamic physical crosslinking of polymeric precursors to form hydrogel networks. However, the orientation of guest motifs is restricted upon macromolecule conjugation. The implications of such restriction on both the kinetics and thermodynamics of the resulting host–guest supramolecular crosslinks are poorly understood. Herein, guest crosslinking motifs from controlled regioisomers are demonstrated to yield distinct material properties. Moreover, the underlying phenomena point to further unexpected impact of modular guest topology manifest on the molecular scale in both the affinity and dynamics of supramolecular complex formation. 
    more » « less