Abstract The transient self‐assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out‐of‐equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host–guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]–guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation.
more »
« less
This content will become publicly available on January 21, 2026
Impact of Guest Orientation in Host–Guest Supramolecular Hydrogels
Host–guest interactions have been increasingly explored for use in the dynamic physical crosslinking of polymeric precursors to form hydrogel networks. However, the orientation of guest motifs is restricted upon macromolecule conjugation. The implications of such restriction on both the kinetics and thermodynamics of the resulting host–guest supramolecular crosslinks are poorly understood. Herein, guest crosslinking motifs from controlled regioisomers are demonstrated to yield distinct material properties. Moreover, the underlying phenomena point to further unexpected impact of modular guest topology manifest on the molecular scale in both the affinity and dynamics of supramolecular complex formation.
more »
« less
- Award ID(s):
- 1944875
- PAR ID:
- 10577912
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Macro Letters
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2161-1653
- Page Range / eLocation ID:
- 8 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Entropy compartmentalization provides new self-assembly routes to colloidal host–guest (HG) struc- tures. Leveraging host particle shape to drive the assembly of HG structures has only recently been proposed and demonstrated. However, the extent to which the guest particles can dictate the structure of the porous network of host particles has not been explored. In this work, by modifying only the guest shape, we show athermal, binary mixtures of star-shaped host particles and convex polygon-shaped guest particles assemble as many as five distinct crystal structures, including rotator and discrete rotator guest crystals, two homoporous host crystals, and one heteroporous host crystal. Edge-to-edge alignment of neighboring stars results in the formation of three distinct pore motifs, whose preferential formation is controlled by the size and shape of the guest particles. Finally, we confirm, via free volume calculations, that assembly is driven by entropy compartmentalization, where the hosts and guests contribute differently to the free energy of the system; free volume calculations also explain differences in assembly based on guest shape. These results provide guest design rules for assembling colloidal HG structures, especially on surfaces and interfaces.more » « less
-
Abstract Cooperativity plays a critical role in self‐assembly and molecular recognition. A rigid aromatic oligoamide macrocycle with a cyclodirectional backbone binds with DABCO‐based cationic guests in a 2 : 1 ratio in high affinities (Ktotal≈1013 M−2) in the highly polar DMF. The host–guest binding also exhibits exceptionally strong positive cooperativity quantified by interaction factors α that are among the largest for synthetic host–guest systems. The unusually strong positive cooperativity, revealed by isothermal titration calorimetry (ITC) and fully corroborated by mass spectrometry, NMR and computational studies, is driven by guest‐induced stacking of the macrocycles and stabilization from the alkyl end chains of the guests, interactions that appear upon binding the second macrocycle. With its tight binding driven by extraordinary positive cooperativity, this host–guest system provides a tunable platform for studying molecular interactions and for constructing stable supramolecular assemblies.more » « less
-
Abstract The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology.more » « less
An official website of the United States government
