A thorough study is made of the dependences on salt concentration and polymer chain lengths of the low-frequency plateau of coacervates of poly (diallyl dimethyl ammonium chloride), PDADMAC, and poly (sodium 4-styrenesulfonate), PSS. The reliability and reproducibility of these measurements are carefully checked by determining the frequency-dependent stress limits of the rheometer through the use of reference fluids and by repeat experiments with coacervates. Long-time frequency sweeps show that coacervates with less salt are more repeatable than those with higher salt. A low-frequency plateau reliably appears only below a critical salt concentration, and the magnitude of the plateau depends strongly on salt concentration and chain lengths of both polycation and polyanion. It is only present for the molecular weight of the polycation, PDADMAC, higher than 100 kDa, but the magnitude of the plateau is more strongly influenced by the chain length of the polyanion, PSS. Possible causes of the low-frequency plateau are discussed.
more »
« less
Fluctuations, structure, and size inside coacervates
Aqueous solutions of oppositely charged macromolecules exhibit the ubiquitous phenomenon of coacervation. This subject is of considerable current interest due to numerous biotechnological applications of coacervates and the general premise of biomolecular condensates. Towards a theoretical foundation of structural features of coacervates, we present a field-theoretic treatment of coacervates formed by uniformly charged flexible polycations and polyanions in an electrolyte solution. We delineate different regimes of polymer concentration fluctuations and structural features of coacervates based on the concentrations of polycation and polyanion, salt concentration, and experimentally observable length scales. We present closed-form formulas for correlation length of polymer concentration fluctuations, scattering structure factor, and radius of gyration of a labelled polyelectrolyte chain inside a concentrated coacervate. Using random phase approximation suitable for concentrated polymer systems, we show that the inter-monomer electrostatic interaction is screened by interpenetration of all charged polymer chains and that the screening length depends on the individual concentrations of the polycation and the polyanion, as well as the salt concentration. Our calculations show that the scattering intensity decreases monotonically with scattering wave vector at higher salt concentrations, while it exhibits a peak at intermediate scattering wave vector at lower salt concentrations. Furthermore, we predict that the dependence of the radius of gyration of a labelled chain on its degree of polymerization generally obeys the Gaussian chain statistics. However, the chain is modestly swollen, the extent of which depending on polyelectrolyte composition, salt concentration, and the electrostatic features of the polycation and polyanion such as the degree of ionization.
more »
« less
- Award ID(s):
- 2015935
- PAR ID:
- 10498930
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- The European Physical Journal E
- Volume:
- 46
- Issue:
- 9
- ISSN:
- 1292-8941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complex coacervation is a widely utilized technique for effecting phase separation, though predictive understanding of molecular-level details remains underdeveloped. Here, we couple coarse-grained Monte Carlo simulations with experimental efforts using a polypeptide-based model system to investigate how a comb-like architecture affects complex coacervation and coacervate stability. Specifically, the phase separation behavior of linear polycation-linear polyanion pairs was compared to that of comb polycation-linear polyanion and comb polycation-comb polyanion pairs. The comb architecture was found to mitigate cooperative interactions between oppositely charged polymers, as no discernible phase separation was observed for comb-comb pairs and complex coacervation of linear-linear pairs yielded stable coacervates at higher salt concentration than linear-comb pairs. This behavior was attributed to differences in counterion release by linear vs. comb polymers during polyeletrolyte complexation. Additionally, the comb polycation formed coacervates with both stereoregular poly( l -glutamate) and racemic poly( d , l -glutamate), whereas the linear polycation formed coacervates only with the racemic polyanion. In contrast, solid precipitates were obtained from mixtures of stereoregular poly( l -lysine) and poly( l -glutamate). Moreover, the formation of coacervates from cationic comb polymers incorporating up to ∼90% pendant zwitterionic groups demonstrated the potential for inclusion of comonomers to modulate the hydrophilicity and/or other properties of a coacervate-forming polymer. These results provide the first detailed investigation into the role of polymer architecture on complex coacervation using a chemically and architecturally well-defined model system, and highlight the need for additional research on this topic.more » « less
-
The linear viscoelastic response, LVR, of a hydrated polyelectrolyte complex coacervate, PEC, was evaluated over a range of frequencies, temperatures, and salt concentrations. The PEC was a nearly-stoichiometric blend of a quaternary ammonium poly([3-(methacrylamido)propyl]trimethylammonium chloride), PMAPTAC, and poly(2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt), PAMPS, an aliphatic sulfonate, selected because they remain fully charged over the conditions of use. Narrow molecular weight distribution polyelectrolytes were prepared using fractionation techniques. A partially deuterated version of PMAPTAC was incorporated to determine the coil radius of gyration, Rg, within PECs using small angle neutron scattering. Chain dimensions were determined to be Gaussian with a Kuhn length of 2.37 nm, which remained constant from 25 to 65 0C. The LVR for a series of matched molecular weight PECs, mostly above the entanglement threshold, exhibited crossovers of modulus versus frequency classically attributed to the reptation time, relaxation between entanglements, and the relaxation of a Kuhn length of units (the “monomer” time). The scaling for zero shear viscosity, η0, versus chain length N, was η0 ~ N3.1, in agreement with “sticky reptation” theory. The lifetime and activation energy, Ep, of a pair between polyanion and polycation repeat units, Pol+Pol-, were determined from diffusion coefficients of salt ions within the PEC. The activation energy for LVR of salt-free PECs was 2Ep, showing that the key mechanism limiting the dynamics of undoped PECs is pair exchange. An FTIR technique was used to distinguish whether SCN- acts as a counterion or a co-ion within PECs. Doping of PECs with NaSCN breaks Pol+Pol- pairing efficiently, which decreases effective crosslinking and decreases viscosity. An equation was derived that quantitatively predicts this effect.more » « less
-
Hillmyer, Marc A (Ed.)A high-salt phase-separation re-entry is observed in mixtures of poly (diallyldimethyl ammonium chloride) (PDADMAC), a strong polycation, and poly (acrylic acid) (PAA), a partially charged polyanion, within the pH range 4.7 to 5.3. This intriguing phenomenon exclusively occurs at salt concentrations exceeding the critical salt concentration required for dissolving the coacervate formed at low salt concentrations, here named the “Upper Critical Salt Concentration” (UCSaC), and at monomer concentrations exceeding 0.1M for each polymer. The transition from associative phase separation at low salt concentration, to a single solution, and ultimately to segregative separation at high salt concentration called the Lower Critical Salt Concentration (LCSaC), arises from the interplay between electrostatic interactions and the hydrophobicity of neutral PAA monomers in a high-salt solvent. To explain this transition, we use a theory combining short-range ion pairing and counterion condensation with long-range electrostatics using the random phase approximation (RPA), and with hydrophobic interactions between PAA neutral monomers and water. The latter is modeled through a Flory-Huggins χ parameter of around 0.6. Literature observations of a continuous transition from associative to segregative phase transition with increasing salt concentration, without a homogeneous single-phase solution at intermediate salt concentration, are also predicted and discussed.more » « less
-
null (Ed.)When oppositely charged polyelectrolytes mix in an aqueous solution, associative phase separation gives rise to coacervates. Experiments reveal the phase diagram for such coacervates, and determine the impact of charge density, chain length and added salt. Simulations often use hybrid MC-MD methods to produce such phase diagrams, in support of experimental observations. We propose an idealized model and a simple simulation technique to investigate coacervate phase behavior. We model coacervate systems by charged bead-spring chains and counterions with short-range repulsions, of size equal to the Bjerrum length. We determine phase behavior by equilibrating a slab of concentrated coacervate with respect to swelling into a dilute phase of counterions. At salt concentrations below the critical point, the counterion concentration in the coacervate and dilute phases are nearly the same. At high salt concentrations, we find a one-phase region. Along the phase boundary, the total concentration of beads in the coacervate phase is nearly constant, corresponding to a “Bjerrum liquid''. This result can be extended to experimental phase diagrams by assigning appropriate volumes to monomers and salts.more » « less
An official website of the United States government

