skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mining threats in high‐level biodiversity conservation policies
Abstract Amid a global infrastructure boom, there is increasing recognition of the ecological impacts of the extraction and consumption of construction minerals, mainly processed as concrete, including significant and expanding threats to global biodiversity. We investigated how high‐level national and international biodiversity conservation policies address mining threats, with a special focus on construction minerals. We conducted a review and quantified the degree to which threats from mining these minerals are addressed in biodiversity goals and targets under the 2011–2020 and post‐2020 biodiversity strategies, national biodiversity strategies and action plans, and the assessments of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services. Mining appeared rarely in national targets but more frequently in national strategies. Yet, in most countries, it was superficially addressed. Coverage of aggregates mining was greater than coverage of limestone mining. We outline 8 key components, tailored for a wide range of actors, to effectively mainstream biodiversity conservation into the extractive, infrastructure, and construction sectors. Actions include improving reporting and monitoring systems, enhancing the evidence base around mining impacts on biodiversity, and modifying the behavior of financial agents and businesses. Implementing these measures could pave the way for a more sustainable approach to construction mineral use and safeguard biodiversity.  more » « less
Award ID(s):
1924111
PAR ID:
10499002
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Conservation Biology
Volume:
38
Issue:
4
ISSN:
0888-8892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tanentzap, Andrew J. (Ed.)
    Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations. 
    more » « less
  2. Cities have a critical role to play in meeting global-scale biodiversity targets. Urban socio-ecological systems connect human and ecological well-being. The outsized impact of cities reaches well-beyond their geographic borders through cultural, ecological, and economic interactions. Although cities account for just 2% of the earth's surface, they host over half of the human population and are responsible for 75% of consumption. The Parties to the Convention on Biological Diversity (CBD) and others have acknowledged the important role cities can play in achieving global targets. In response, at least 110 cities have produced plans focused on biodiversity, but we do not know the extent to which these city plans align with global targets or what role they play in achieving these targets. Here, we explore the relationship between global biodiversity conservation targets and local biodiversity plans to identify how elements at the two scales align or diverge. We compared the CBD Strategic Plan 2011–2020 (Aichi Targets) with 44 local biodiversity plans (often called LBSAPs) from cities around the world. We analyzed more than 2,800 actions from the local plans to measure the relationship with these global targets. Our results show how local approaches to biodiversity conservation can inform post-2020 global frameworks to improve coordination between global and local scale processes. We identify actions particular to the local scale that are critical to conserve global biodiversity and suggest a framework for improved coordination between actors at different scales that address their respective roles and spheres of influence. 
    more » « less
  3. Abstract Choices conservation organizations make when designing and implementing protected area strategies affect the timing of land protection. Well‐timed habitat protection will have a greater impact on biodiversity outcomes; yet, decisions affecting the timing of protection have received much less attention than other aspects of protected area design. We reviewed evidence on the timing of protected area establishment and on temporal variation in factors influencing the ecological effectiveness and cost‐effectiveness of establishing protected areas. Protected area coverage often increases in episodic bursts rather than at some uniform rate. Moreover, temporal variation in biodiversity indicators, habitat conversion threats, and the cost of protecting land suggests that the conservation benefit of protecting land at some times will be greater than that at others. Conservation organizations increase their flexibility to choose when they protect land by using flexibility‐creating mechanisms, such as loans, multiyear budgeting, and endowment management. Models and theory suggest how this can be done to have the largest positive impact for conservation by exploiting long‐ and short‐term variation in factors that affect the rate of biodiversity return on protected area investments. 
    more » « less
  4. Abstract Preserving biodiversity under rapidly changing climate conditions is challenging. One approach for estimating impacts and their magnitude is to model current relationships between genomic and environmental data and then to forecast those relationships under future climate scenarios. In this way, understanding future genomic and environmental relationships can help guide management decisions, such as where to establish new protected areas where populations might be buffered from high temperatures or major changes in rainfall. However, climate warming is only one of many anthropogenic threats one must consider in rapidly developing parts of the world. In Central Africa, deforestation, mining, and infrastructure development are accelerating population declines of rainforest species. Here we investigate multiple anthropogenic threats in a Central African rainforest songbird, the little greenbul (Andropadus virens). We examine current climate and genomic variation in order to explore the association between genome and environment under future climate conditions. Specifically, we estimateGenomic Vulnerability, defined as the mismatch between current and predicted future genomic variation based on genotype–environment relationships modeled across contemporary populations. We do so while considering other anthropogenic impacts. We find that coastal and central Cameroon populations will require the greatest shifts in adaptive genomic variation, because both climate and land use in these areas are predicted to change dramatically. In contrast, in the more northern forest–savanna ecotones, genomic shifts required to keep pace with climate will be more moderate, and other anthropogenic impacts are expected to be comparatively low in magnitude. While an analysis of diverse taxa will be necessary for making comprehensive conservation decisions, the species‐specific results presented illustrate how evolutionary genomics and other anthropogenic threats may be mapped and used to inform mitigation efforts. To this end, we present an integrated conceptual model demonstrating how the approach for a single species can be expanded to many taxonomically diverse species. 
    more » « less
  5. Summary Biodiversity knowledge gaps and biases persist across low-income tropical regions. Genetic data are essential for addressing these issues, supporting biodiversity research and conservation planning. To assess progress in wildlife genetic sampling within the Philippines, I evaluated the scope, representativeness, and growth of publicly available genetic data and research on endemic vertebrates from the 1990s through 2024. Results showed that 82.3% of the Philippines’ 769 endemic vertebrates have genetic data, although major disparities remain. Reptiles had the least complete coverage but exhibited the highest growth, with birds, mammals, and amphibians following in that order. Species confined to smaller biogeographic subregions, with narrow geographic ranges, or classified as threatened or lacking threat assessments were disproportionately underrepresented. Research output on reptiles increased markedly, while amphibian research lagged behind. Although the number of non-unique authors in wildlife genetics studies involving Philippine specimens has grown steeply, Filipino involvement remains low. These results highlight the uneven and non-random distribution of wildlife genetic knowledge within this global biodiversity hotspot. Moreover, the limited participation of Global South researchers underscores broader inequities in wildlife genomics. Closing these gaps and addressing biases creates a more equitable and representative genetic knowledge base and supports its integration into national conservation efforts aligned with global biodiversity commitments. 
    more » « less