skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Responses by benthic invertebrate community composition to dissolved organic matter in lakes decline substantially above a threshold concentration
Abstract Dissolved organic matter (DOM), often measured as dissolved organic carbon (DOC), plays a fundamental role in influencing the structure and function of lake ecosystems. Due to the myriad ecosystem effects of DOM, widespread observations of long‐term increasing DOM concentrations have received much attention from ecologists. DOM positively influences primary production and consumer production at low concentrations due to the fertilising influence of bound nutrients. However, beyond a unimodal peak in production, a reduced light environment may result in a negative effect on production. This unimodal model has been largely developed and tested in lakes with low to moderate DOM concentrations (i.e., typically ≤10 mg/L DOC).To understand ecological responses in lakes across a larger range in DOM concentrations, we examined the response of benthic invertebrate communities in 148 Swedish lakes with DOM concentrations ranging between 0.67 and 32.77 mg/L DOC.We found that increasing DOM concentrations had a strong effect on invertebrate community composition belowc.10 mg/L. Across this range, abundances of individual taxa both increased and decreased, probably in response to environmental change induced by DOM. However, in lakes above this concentration, increasing DOM had minimal influence on community composition.As DOM concentrations continue to increase, faunal communities in lakes below this 10 mg/L DOC threshold are likely to undergo substantial change whereas those above this threshold are likely to be minimally impacted.  more » « less
Award ID(s):
2048031
PAR ID:
10499032
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Freshwater Biology
Volume:
69
Issue:
2
ISSN:
0046-5070
Page Range / eLocation ID:
288 to 299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dissolved organic matter (DOM) drives biogeochemical processes in aquatic ecosystems. Yet, how hydrologic restoration in nutrient‐enriched ecosystems changes DOM and the consequences of those changes for the carbon cycle remain unclear. To predict the consequences of hydrologic restoration on carbon cycling in restored wetlands, we need to understand how local environmental factors influence production, processing, and transport of DOM. We collected surface water samples along transects in restored peat (organic‐rich, macrophyte‐dominated) and marl (carbonate, periphyton‐dominated) freshwater marshes in the Everglades (Florida, U.S.A.) that varied in environmental factors (water depth, phosphorus [P] concentrations [water, macrophytes, periphyton, and soil], and primary producer biomass) to understand drivers of dissolved organic carbon (DOC) concentrations and DOM composition. Higher water depths led to a “greening” of DOM, due to increasing algal contributions, with decreasing concentrations of DOC in peat wetlands, and a “browning” of DOM, due to increasing humic contributions, with increasing DOC concentrations in marl wetlands. Soil total P was positively correlated with DOC concentrations and microbial contributions to DOM in peat wetlands, and periphyton total P was positively correlated with algal contributions to DOM in marl wetlands. Despite large variations in both vegetation biomass and periphyton biovolume across transects and sites, neither were predictors of DOC concentrations or DOM composition. Hydrologic restoration differentially alters DOM in peat and marl marshes and interacts with nutrient enrichment to shift proportions of green and brown contributions to surface water chemistry, which has the potential to modify wetland food webs, as well as the processing of carbon by micro‐organisms. 
    more » « less
  2. This dataset includes (1) original data from a dissolved organic carbon (DOC) incubation experiment and (2) a data synthesis of the DOC incubation experiment literature. Study component (1) was a factorial lab experiment crossing varying dissolved organic matter (DOM) sources (Suwannee River Fulvic Acid, Elliott soil leachate, Chlorella leachate) with varying microbial communities. The objective of this study component was to test the interacting effects of microbial community composition and DOM characteristics on carbon (C) biodegradation. We used a Micro-Oxymax Respirometer (Columbus Instruments, Columbus, Ohio) to measure carbon dioxide and oxygen accumulation at two hour intervals for a period of two weeks, and quantified the initial and final concentrations of dissolved organic carbon and total dissolved nitrogen of each experimental unit. To verify that the three DOM source solutions had differing chemical compositions and potential bioreactivity, we optically characterized each DOM source using mass spectra analysis and excitation-emission matrices (EEMs). Study component (2) is a synthesis of DOC concentrations from the C degradation experiment literature. The criteria for including a study in this synthesis was that (a) incubation DOM was sourced from a river, lake, marine, estuary, or marsh, and (b) that C concentrations were measured at least twice throughout the incubation in addition to an initial measurement. For each study, we extracted initial DOC values, elapsed incubation time, and reported DOC concentrations during the incubation period for each experimental treatment. This data package is completed. 
    more » « less
  3. Abstract Dissolved organic matter (DOM) concentrations and composition within wet deposition are rarely monitored despite contributing a large input of bioavailable dissolved organic carbon (DOC) and nitrogen (DON) to the Earth's surface. Lacking from the literature are spatially comprehensive assessments of simultaneous measurements of wet deposition DOC and DON chemistry and their dependencies on metrics of climate and environmental factors. Here, we use archived precipitation samples from the US National Atmospheric Deposition Program collected in 2017 to 2018 from 17 sites across six ecoregions to investigate variability in the concentration and composition of depositional DOM. We hypothesize metrics of DOM chemistry vary with ecoregion, season, large‐scale climate drivers, and precipitation geographic source. Findings indicate differences in DOC and DON concentrations and loads among ecoregions. The highest wet deposition concentrations are from sites in the Northern Forests and lowest concentrations from sites in Marine West Coast Forests. Summer and autumn samples contained the highest DOC concentrations and DON concentrations that were consistently above detection limit, corresponding with seasonality of peak air temperatures and the phenology of the growing season in the northern hemisphere. Compositional trends suggest lighter DOM molecules in autumn and winter and heavier molecules in spring and summer. Climate drivers explain 51% of variation in DOM chemistry, revealing differing drivers on the concentrations and loads of DOC versus DON in wet deposition. This study highlights the necessity of incorporating DOC and DON measurements into national deposition monitoring networks to understand spatial and temporal feedbacks between climate change, atmospheric chemistry and landscape biogeochemistry. 
    more » « less
  4. Abstract Coastal ecosystems are rapidly shifting due to changes in hydrologic presses (e.g., sea‐level rise) and pulses (e.g., seasonal hydrology, disturbances, and restoration of degraded wetlands). Changing water levels and sources are master variables in coastal wetlands that can alter carbon concentrations, sources, processing, and export. Yet, how long‐term increases in water levels from marine and freshwater sources influence dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition is uncertain. We quantified how long‐term changes in water levels are affecting DOC concentration (2001–2021) and DOM composition (2011–2021) differently across the Florida Everglades. DOC concentrations decreased with high water depths in peat marshes and increased with high water levels in marl marshes and across mangroves, and these relationships were reproduced in freshwater peat marshes and shrub mangroves. In the highly productive riverine mangroves, cross‐wavelet analysis highlighted variable relationships between DOC and water level were largely modulated by hurricane disturbances. By comparing relationships between water level and DOC concentrations with carbon sources from DOM fluorescence indices, we found that changing water sources between the dry and wet season shift DOM from algal to detrital sources in freshwater marshes, from detrital marsh to detrital mangrove sources in the brackish water ecotone, and from detrital mangrove to algal marine sources in downstream mangroves. As climate change and anthropogenic drivers continue to alter water levels in coastal wetlands, integrating spatial and temporal measurements of DOC concentrations and DOM compositions is essential to better constrain the transformation and export of carbon across these coastal ecosystems. 
    more » « less
  5. Tidal wetlands are a significant source of dissolved organic matter (DOM) to coastal ecosystems, which impacts nutrient cycling, light exposure, carbon dynamics, phytoplankton activity, microbial growth, and ecosystem productivity. There is a wide variety of research on the properties and sources of DOM; however, little is known about the characteristics and degradation of DOM specifically sourced from tidal wetland plants. By conducting microbial and combined UV exposure and microbial incubation experiments of leachates from fresh and senescent plants in Chesapeake Bay wetlands, it was demonstrated that senescent material leached more dissolved organic carbon (DOC) than fresh material (77.9 ± 54.3 vs 21.6 ± 11.8 mg DOC L−1, respectively). Degradation followed an exponential decay pattern, and the senescent material averaged 50.5 ± 9.45% biodegradable DOC (%BDOC), or the loss of DOC due to microbial degradation. In comparison, the fresh material averaged a greater %BDOC (72.6 ± 19.2%). Percent remaining of absorbance (83.3 ± 26.7% for fresh, 90.1 ± 10.8% for senescent) was greater than percent remaining DOC, indicating that colored DOM is less bioavailable than non-colored material. Concentrations of DOC leached, %BDOC, and SUVA280 varied between species, indicating that the species composition of the marsh likely impacts the quantity and quality of exported DOC. Comparing the UV + microbial to the microbial only incubations did not reveal any clear effects on %BDOC but UV exposure enhanced loss of absorbance during subsequent dark incubation. These results demonstrate the impacts of senescence on the quality and concentration of DOM leached from tidal wetland plants, and that microbes combined with UV impact the degradation of this DOM differently from microbes alone. 
    more » « less