skip to main content


Search for: All records

Award ID contains: 2048031

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.

     
    more » « less
    Free, publicly-accessible full text available March 21, 2025
  2. Abstract

    Whole lake residence time has been associated with various water quality parameters, including harmful algal blooms. Despite observations of spatial variability in commonly measured lake water quality parameters, little attention is given to the spatial variability of residence time in lakes. In this paper we use water age as a surrogate for residence time and we examine its spatial and temporal distribution in 10 bays of varying size in Lake George, New York (USA). Using a validated hydrodynamic model against observations of water temperature and water currents, and using simulated water age, we show that the average residence time in most of the bays is less than 3 days. Timeseries of bay‐average water age shows that it can sharply decrease within 1 day due to a strong wind event. The average spatial distribution is shown to be non‐uniform, with only a small section of the bottom layer of the bays having a substantially greater age, which may be more than 1 week in certain bays. Snapshots of water age transects indicate that strong wind events substantially change the vertical distribution of water age in some bays, even to the extent of inverting the distribution. The substantial decreases of water age in the bays were associated with the shallowing and deepening of the thermocline. Our results highlight how variations in water residence times within lakes could introduce substantial variation in water quality attributes. Whole lake residence times may serve as a poor proxy to understand the dynamics of water masses, especially in large and morphologically complex waterbodies.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract

    Atmospheric warming heats lakes, but the causes of variation among basins are poorly understood. Here, multi-decadal profiles of water temperatures, trophic state, and local climate from 345 temperate lakes are combined with data on lake geomorphology and watershed characteristics to identify controls of the relative rates of temperature change in water (WT) and air (AT) during summer. We show that differences in local climate (AT, wind speed, humidity, irradiance), land cover (forest, urban, agriculture), geomorphology (elevation, area/depth ratio), and water transparency explain >30% of the difference in rate of lake heating compared to that of the atmosphere. Importantly, the rate of lake heating slows as air warms (P < 0.001). Clear, cold, and deep lakes, especially at high elevation and in undisturbed catchments, are particularly responsive to changes in atmospheric temperature. We suggest that rates of surface water warming may decline relative to the atmosphere in a warmer future, particularly in sites already experiencing terrestrial development or eutrophication.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    Dissolved organic matter (DOM), often measured as dissolved organic carbon (DOC), plays a fundamental role in influencing the structure and function of lake ecosystems. Due to the myriad ecosystem effects of DOM, widespread observations of long‐term increasing DOM concentrations have received much attention from ecologists. DOM positively influences primary production and consumer production at low concentrations due to the fertilising influence of bound nutrients. However, beyond a unimodal peak in production, a reduced light environment may result in a negative effect on production. This unimodal model has been largely developed and tested in lakes with low to moderate DOM concentrations (i.e., typically ≤10 mg/L DOC).

    To understand ecological responses in lakes across a larger range in DOM concentrations, we examined the response of benthic invertebrate communities in 148 Swedish lakes with DOM concentrations ranging between 0.67 and 32.77 mg/L DOC.

    We found that increasing DOM concentrations had a strong effect on invertebrate community composition belowc.10 mg/L. Across this range, abundances of individual taxa both increased and decreased, probably in response to environmental change induced by DOM. However, in lakes above this concentration, increasing DOM had minimal influence on community composition.

    As DOM concentrations continue to increase, faunal communities in lakes below this 10 mg/L DOC threshold are likely to undergo substantial change whereas those above this threshold are likely to be minimally impacted.

     
    more » « less
  5. Abstract

    Depth regulates many attributes of aquatic ecosystems, but relatively few lakes are measured, and existing datasets are biased toward large lakes. To address this, we used a large dataset of maximum (Zmax;n = 16,831) and mean (Zmean;n = 5,881) depth observations to create new depth models, focusing on lakes < 1,000 ha. We then used the models to characterize patterns in lake basin shape and volume. We included terrain metrics, water temperature and reflectance, polygon attributes, and other predictors in a random forest model. Our final models generally outperformed existing models (Zmax; root mean square error [RMSE] = 8.0 m andZmean; RMSE = 3.0 m). Our models show that lake depth followed a Pareto distribution, with 2.8 orders of magnitude fewer lakes for an order of magnitude increase in depth. In addition, despite orders of magnitude variation in surface area, most size classes had a modal maximum depth of ~ 5 m. Concave (bowl‐shaped) lake basins represented 79% of all lakes, but lakes were more convex (funnel‐shaped) as surface area increased. Across the conterminous United States, 9.8% of all lake water was within the top meter of the water column, and 48% in the top 10 m. Excluding the Laurentian Great Lakes, we estimate the total volume in the conterminous United States is 1,057–1,294 km3, depending on whetherZmaxorZmeanwas modeled. Lake volume also exhibited substantial geographic variation, with high volumes in the upper Midwest, Northeast, and Florida and low volumes in the southwestern United States.

     
    more » « less
  6. Abstract

    Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyllaconcentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyllain high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.

     
    more » « less
  7. Abstract

    The concentration of dissolved oxygen (DO) is an important attribute of aquatic ecosystems, influencing habitat, drinking water quality, biodiversity, nutrient biogeochemistry, and greenhouse gas emissions. While average summer DO concentrations are declining in lakes across the temperate zone, much remains unknown about seasonal factors contributing to deepwater DO losses. It is unclear whether declines are related to increasing rates of seasonal DO depletion or changes in seasonal stratification that limit re‐oxygenation of deep waters. Furthermore, despite the presence of important biological and ecological DO thresholds, there has been no large‐scale assessment of changes in the amount of habitat crossing these thresholds, limiting the ability to understand the consequences of observed DO losses. We used a dataset from >400 widely distributed lakes to identify the drivers of DO losses and quantify the frequency and volume of lake water crossing biologically and ecologically important threshold concentrations ranging from 5 to 0.5 mg/L. Our results show that while there were no consistent changes over time in seasonal DO depletion rates, over three‐quarters of lakes exhibited an increase in the duration of stratification, providing more time for seasonal deepwater DO depletion to occur. As a result, most lakes have experienced summertime increases in the amount of water below all examined thresholds in deepwater DO concentration, with increases in the proportion of the water column below thresholds ranging between 0.9% and 1.7% per decade. In the 30‐day period preceding the end of stratification, increases were greater at >2.2% per decade and >70% of analyzed lakes experienced increases in the amount of oxygen‐depleted water. These results indicate ongoing climate‐induced increases in the duration of stratification have already contributed to reduction of habitat for many species, likely increased internal nutrient loading, and otherwise altered lake chemistry. Future warming is likely to exacerbate these trends.

     
    more » « less
  8. Abstract

    Macrosystem‐scale research is supported by many ecological networks of people, infrastructure, and data. However, no network is sufficient to address all macrosystems ecology research questions, and there is much to be gained by conducting research and sharing resources across multiple networks. Unfortunately, conducting macrosystem research across networks is challenging due to the diversity of expertise and skills required, as well as issues related to data discoverability, veracity, and interoperability. The ecological and environmental science community could substantially benefit from networking existing networks to leverage past research investments and spur new collaborations. Here, we describe the need for a “network of networks” (NoN) approach to macrosystems ecological research and articulate both the challenges and potential benefits associated with such an effort. We describe the challenges brought by rapid increases in the volume, velocity, and variety of “big data” ecology and highlight how a NoN could build on the successes and creativity within component networks, while also recognizing and improving upon past failures. We argue that a NoN approach requires careful planning to ensure that it is accessible and inclusive, incorporates multimodal communications and ways to interact, supports the creation, testing, and promulgation of community standards, and ensures individuals and groups receive appropriate credit for their contributions. Additionally, a NoN must recognize important trade‐offs in network architecture, including how the degree of centralization of people, infrastructure, and data influence network scalability and creativity. If implemented carefully and thoughtfully, a NoN has the potential to substantially advance our understanding of ecological processes, characteristics, and trajectories across broad spatial and temporal scales in an efficient, inclusive, and equitable manner.

     
    more » « less
  9. Free, publicly-accessible full text available February 1, 2025