skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Folded Well‐Defined 3D Architecture from Synthetic Helical and Sheet‐Like Polymers
Abstract The fabrication of truly hierarchically folded single‐chain polymeric nanoparticles with primary, secondary, and defined 3D architecture is still an unfulfilled goal. In this contribution, a polymer is reported that folds into a well‐defined 3D structure from a synthetic sheet‐helix block copolymer. The sheet‐like poly(p‐phenylene vinylene) (PPV) block is synthesized via the ring‐opening metathesis polymerization of a thymine‐bearing dialkoxy‐substituted [2.2]paracyclophane‐1,9‐diene. The PPV block is terminated with a Pd complex using a Pd‐containing chain‐terminating agent. The terminal Pd complex catalyzes the polymerization of isocyanide monomers with side‐chains containing either a chiral menthol or an achiral diaminopyridine resulting in the formation of a helical poly(isocyanide) (PIC) random copolymer. The PIC side‐chains are capable of engaging in complementary hydrogen‐bonding with thymine units along the PPV block resulting in the folding of the two secondary structural domains into a well‐defined 3D structure. The folding and unfolding of the polymer in both chloroform and THF are monitored using dynamic light scattering and NMR spectroscopy. This work is the first example of a hierarchically folded synthetic polymer featuring a defined 3D structure achieved by using two different polymer backbones with two distinct secondary structures.  more » « less
Award ID(s):
2203929
PAR ID:
10499061
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We report poly(isocyanide)-based random copolymers (co-PIC) featuring alkoxycarbonyl-based side-chains synthesized via the metal-catalyzed controlled polymerization of chiral and achiral isocyanide monomers. The pyridine-functionalized achiral monomer provides functional sites while the chiral monomer drives the formation of a one-handed preferred helix. The side-chain functionalized helical polymer undergoes self-assembly with palladated pincer ligands, as evidenced by 1H NMR and UV-Vis spectroscopies. Circular dichroism (CD) spectroscopy confirms that the side-chain self-assembly does not affect the backbone helicity. We construct supramolecular helical brush copolymers via the metal coordination of the co-PIC backbone with telechelic poly(styrene)s. 1H NMR and UV-Vis spectroscopies confirm the metal coordination, and CD measurements suggest that the backbone retains its helical conformation. Additionally, viscometry measurements verify the formation of high molecular weight polymers while dynamic light scattering confirms the increasing hydrodynamic radii of the resulting supramolecular brush copolymers. Our methodology constructs complex 3D materials with fully synthetic, secondary structure containing building blocks. We view this as a platform for building architecturally controlled 3D supramolecular materials with high degrees of complexity. 
    more » « less
  2. Abstract Two‐dimensional (2D) assemblies of water‐soluble block copolymers have been limited by a dearth of systematic studies that relate polymer structure to pathway mechanism and supramolecular morphology. Here, we employ sequence‐defined triblock DNA amphiphiles for the supramolecular polymerization of free‐standing DNA nanosheets in water. Our systematic modulation of amphiphile sequence shows the alkyl chain core forming a cell membrane‐like structure and the distal π‐stacking chromophore block folding back to interact with the hydrophilic DNA block on the nanosheet surface. This interaction is crucial to sheet formation, marked by a chiral “signature”, and sensitive to DNA sequence, where nanosheets form with a mixed sequence, but not with a homogeneous poly(thymine) sequence. This work opens the possibility of forming well‐ordered, bilayer‐like assemblies using a single DNA amphiphile for applications in cell sensing, nucleic acid therapeutic delivery and enzyme arrays. 
    more » « less
  3. We report the first heterotelechelic helical poly(methacrylamide) (PMAc) bearing orthogonal supramolecular binding sites on its chain-ends synthesized through a combination of reversible addition–fragmentation chain-transfer (RAFT) polymerization and thiol–bromo “click” chemistry. The heterotelechelic PMAc was assembled with two monotelechelic polymers featuring different secondary structures, namely a coil-like poly(styrene) and a helical poly(isocyanide), resulting in the formation of a coil–helix–helix supramolecular triblock copolymer through orthogonal metal coordination and hydrogen bonding interactions. Triblock assembly was confirmed through 1 H NMR spectroscopy, isothermal titration calorimetry (ITC) and viscometry. The individual polymer blocks retained their secondary structures in the final triblock copolymer, as evidenced by circular dichroism (CD) spectroscopy. Our synthetic strategy expands the toolbox of triblock copolymers featuring structural motifs similar to the ones found in proteins and provides the potential for the development of other complex multifunctional polymeric ensembles. 
    more » « less
  4. Abstract A versatile synthetic platform is reported that affords high molecular weight graft copolymers containing polydimethylsiloxane (PDMS) backbones and vinyl‐based polymer side chains with excellent control over molecular weight and grafting density. The synthetic approach leverages thiol‐ene click chemistry to attach an atom‐transfer radical polymerization (ATRP) initiator to a variety of commercially available poly(dimethylsiloxane‐co‐methylvinylsiloxane) backbones (PDMS‐co‐PVMS), followed by controlled radical polymerization with a wide scope of vinyl monomers. Selective degradation of the siloxane backbone with tetrabutylammonium fluoride confirmed the controlled nature of side‐chain growth via ATRP, yielding targeted side‐chain lengths for copolymers containing up to 50% grafting density and overall molecular weights in excess of 1 MDa. In addition, by using a mixture of thiols, grafting density and functionality can be further controlled by tuning initiator loading along the backbone. For example, solid‐state fluorescence of the graft copolymers was achieved by incorporating a thiol‐containing fluorophore along the siloxane backbone during the thiol‐ene click reaction. This simple synthetic platform provides facile control over the properties of a wide variety of grafted copolymers containing flexible PDMS backbones and vinyl polymer side chains. 
    more » « less
  5. Mimicking the structure of proteins using synthetic polymers requires building blocks with structural similarity and the use of various noncovalent and dynamic covalent interactions. We report the synthesis of helical poly(isocyanide)s bearing diaminopyridine and pyridine side-chains and the multistep functionalization of the polymers’ side-chains using hydrogen-bonding and metal-coordination. The orthogonality of the hydrogen-bonding and metal-coordination was proved by varying the sequence of the multistep assembly. The two side-chain functionalization are reversible through the use of competitive solvents and/or competing ligands. Throughout the assembly and disassembly, the helical conformation of the polymer backbone is sustained as proved by circular dichroism spectroscopy. These results open the possibility to incorporate helical domains into complex polymer architectures and create a helical scaffold for smart materials. 
    more » « less