skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrochemical Technique to Characterize the High Temperature Oxidation Behavior of Materials
This work demonstrates an approach using solid state electrochemical cells to study the long-term oxidation of materials at 800 °C. The capability of zirconia-based cells to control the oxygen partial pressure was first evaluated using an empty chamber. For most voltages applied to the pump cell, the steady state sensor voltage matches the pump voltage, leakage rates are low, and response times are short, allowing precise and prompt control over the chamber atmosphere. The technique was validated by measuring the oxidation of niobium and nickel. Niobium was oxidized at pump voltages ranging from 0 mV to +500 mV; decreasing the oxygen partial pressure around the specimen reduces the oxidation rate. Comparing the integrated oxidation rate with the weighed mass gain showed good agreement. Measured oxidation rates for nickel were of order 1μg h−1, illustrating the sensitivity of this technique. For higher oxidation rates, a depression in oxygen partial pressure was observed around the specimen. Improved control over the oxidation potential was achieved by using a sensor cell to dynamically tune the pump voltage. Rates for both metals are compared to literature reports using other techniques.  more » « less
Award ID(s):
1944557
PAR ID:
10499175
Author(s) / Creator(s):
;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
171
Issue:
4
ISSN:
0013-4651
Format(s):
Medium: X Size: Article No. 041502
Size(s):
Article No. 041502
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we report the preparation of uniform Ni–P–O, Ni–S–O, and Ni–S–P–O electrocatalytic films on nickel foam (NF) substrates via flow cell-assisted electrodeposition. Remarkably, electrodeposition onto 12 cm 2 substrates was optimized by strategically varying critical parameters. The high quality and reproducibility of the materials is attributed to the use of a 3D-printed flow cell with a tailored design. Then, the as-fabricated electrodes were tested for overall water splitting in the same flow cell under alkaline conditions. The best-performing sample, NiSP/NF, required relatively low overpotentials of 93 mV for the HER and 259 mV for the OER to produce a current density of 10 mA cm −2 . Importantly, the electrodeposited films underwent oxidation into amorphous nickel (oxy)hydroxides and oxidized S and P species, improving both HER and OER performance. The superior electrocatalytic performance of the Ni–S–P–O films originates from the unique reconstruction process during the HER/OER. Furthermore, the overall water splitting test using the NiSP/NF couple required a low cell voltage of only 1.85 V to deliver a current density of 100 mA cm −2 . Overall, we demonstrate that high-quality electrocatalysts can be obtained using a simple and reproducible electrodeposition method in a robust 3D-printed flow cell. 
    more » « less
  2. The stabilization of the B-site oxidation state in ABO 3 perovskites using wet-chemical methods is a synthetic challenge, which is of fundamental and practical interest for energy storage and conversion devices. In this work, defect-controlled (Sr-deficiency and oxygen vacancies) strontium niobium( iv ) oxide (Sr 1−x NbO 3−δ , SNO) metal oxide nanoparticles (NPs) were synthesized for the first time using a low-pressure wet-chemistry synthesis. The experiments were performed under reduced oxygen partial pressure to prevent by-product formation and with varying Sr/Nb molar ratio to favor the formation of Nb 4+ pervoskites. At a critical Sr to Nb ratio (Sr/Nb = 1.3), a phase transition is observed forming an oxygen-deficient SrNbO 3 phase. Structural refinement on the resultant diffraction pattern shows that the SNO NPs consists of a near equal mixture of SrNbO 3 and Sr 0.7 NbO 3−δ crystal phases. A combination of Rietveld refinement and X-ray photoelectron spectroscopy (XPS) confirmed the stabilization of the +4 oxidation state and the formation of oxygen vacancies. The Nb local site symmetry was extracted through Raman spectroscopy and modeled using DFT. As further confirmation, the particles demonstrate the expected absorption highlighting their restored optoelectronic properties. This low-pressure wet-chemical approach for stabilizing the oxidation state of a transition metal has the potential to be extended to other oxygen sensitive, low dimensional perovskite oxides with unique properties. 
    more » « less
  3. Abstract Multidimensional power devices can achieve performance beyond conventional limits by deploying charge‐balanced p‐n junctions. A key obstacle to developing such devices in many wide‐bandgap (WBG) and ultra‐wide bandgap (UWBG) semiconductors is the difficulty of native p‐type doping. Here the WBG nickel oxide (NiO) as an alternative p‐type material is investigated. The acceptor concentration (NA) in NiO is modulated by oxygen partial pressure during magnetron sputtering and characterized using a p‐n+heterojunction diode fabricated on gallium oxide (Ga2O3) substrate. Capacitance and breakdown measurements reveal a tunableNAfrom < 1018 cm−3to 2×1018 cm−3with the practical breakdown field (EB) of 3.8 to 6.3 MV cm−1. ThisNArange allows for charge balance to n‐type region with reasonable process latitude, andEBis high enough to pair with many WBG and UWBG semiconductors. The extractedNAis then used to design a multidimensional Ga2O3diode with NiO field‐modulation structure. The diodes fabricated with two differentNAboth achieve 8000 V breakdown voltage and 4.7 MV cm−1average electric field. This field is over three times higher than the best report in prior multi‐kilovolt lateral devices. These results show the promise of p‐type NiO for pushing the performance limits of power devices. 
    more » « less
  4. null (Ed.)
    Nickel nitride (Ni 3 N) is known as one of the promising precatalysts for the electrochemical oxygen evolution reaction (OER) under alkaline conditions. Due to its relatively low oxidation resistance, Ni 3 N is electrochemically self-oxidized into nickel oxides/oxyhydroxides (electroactive sites) during the OER. However, we lack a full understanding of the effects of Ni 3 N self-oxidation and Fe impurity incorporation into Ni 3 N from electrolyte towards OER activity. Here, we report on our examination of the compositional and structural transformation of Ni 3 N precatalyst layers on Ni foams (Ni 3 N/Ni foam) during extended periods of OER testing in Fe-purified and unpurified KOH media using both a standard three-electrode cell and a flow cell, and discuss their electrocatalytic properties. After the OER tests in both KOH media, the Ni 3 N surfaces were converted into amorphous, nano-porous nickel oxide/(oxy)hydroxide surfaces. In the Fe-purified electrolyte, a decrease in OER activity was confirmed after the OER test because of the formation of pure NiOOH with low OER activity and electrical conductivity. Conversely, in the unpurified electrolyte, a continuous increase in OER activity was observed over the OER testing, which may have resulted from the Fe incorporation into the self-oxidation-formed NiOOH. Our experimental findings revealed that Fe impurities play an essential role in obtaining notable OER activity using the Ni 3 N precatalyst. Additionally, our Ni 3 N/Ni foam electrode exhibited a low OER overpotential of 262 mV to reach a geometric current density of 10 mA cm geo −2 in a flow cell with unpurified electrolyte. 
    more » « less
  5. Abstract The Scintillating Bubble Chamber (SBC) collaboration purchased 32 Hamamatsu VUV4 silicon photomultipliers (SiPMs) for use in SBC-LAr10, a bubble chamber containing 10 kg of liquid argon. A dark-count characterization technique, which avoids the use of a single-photon source, was used at two temperatures to measure the VUV4 SiPMs breakdown voltage (VBD), the SiPM gain (gSiPM), the rate of change ofgSiPMwith respect to voltage (m), the dark count rate (DCR), and the probability of a correlated avalanche (PCA) as well as the temperature coefficients of these parameters. A Peltier-based chilled vacuum chamber was developed at Queen's University to cool down the Quads to 233.15 ± 0.2 K and 255.15 ± 0.2 K with average stability of ±20 mK. An analysis framework was developed to estimate VBDto tens of mV precision and DCR close to Poissonian error. The temperature dependence of VBDwas found to be 56 ± 2 mV K-1, andmon average across all Quads was found to be (459 ± 3(stat.)±23(sys.))× 103e-PE-1V-1. The average DCR temperature coefficient was estimated to be 0.099 ± 0.008 K-1corresponding to a reduction factor of 7 for every 20 K drop in temperature. The average temperature dependence of PCAwas estimated to be 4000 ± 1000 ppm K-1. PCAestimated from the average across all SiPMs is a better estimator than the PCAcalculated from individual SiPMs, for all of the other parameters, the opposite is true. All the estimated parameters were measured to the precision required for SBC-LAr10, and the Quads will be used in conditions to optimize the signal-to-noise ratio. 
    more » « less