skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thinking Beyond the Device: An Overview of Human- and Equity-Centered Approaches for Health Technology Design
A shift in the traditional technocentric view of medical device design to a human-centered one is needed to bridge existing translational gaps and improve health equity. To ensure the successful and equitable adoption of health technology innovations, engineers must think beyond the device and the direct end user and must seek a more holistic understanding of broader stakeholder needs and the intended context of use early in a design process. The objectives of this review article are ( a) to provide rationale for the need to incorporate meaningful stakeholder analysis and contextual investigation in health technology development and biomedical engineering pedagogy, ( b) to review existing frameworks and human- and equity-centered approaches to stakeholder engagement and contextual investigation for improved adoption of innovative technologies, and ( c) to present case studyexamples of medical device design that apply these approaches to bridge the gaps between biomedical engineers and the contexts for which they are designing.  more » « less
Award ID(s):
2201981
PAR ID:
10499380
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Annual Review of Biomedical Engineering
Date Published:
Journal Name:
Annual Review of Biomedical Engineering
Volume:
25
Issue:
1
ISSN:
1523-9829
Page Range / eLocation ID:
257 to 280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic accelerated the adoption of remote patient monitoring technology, which offers exciting opportunities for expanded connected care at a distance. However, while the mode of clinicians’ interactions with patients and their health data has transformed, the larger framework of how we deliver care is still driven by a model of episodic care that does not facilitate this new frontier. Fully realizing a transformation to a system of continuous connected care augmented by remote monitoring technology will require a shift in clinicians’ and health systems’ approach to care delivery technology and its associated data volume and complexity. In this article, we present a solution that organizes and optimizes the interaction of automated technologies with human oversight, allowing for the maximal use of data-rich tools while preserving the pieces of medical care considered uniquely human. We review implications of this “augmented continuous connected care” model of remote patient monitoring for clinical practice and offer human-centered design-informed next steps to encourage innovation around these important issues. 
    more » « less
  2. The discipline of biomedical engineering (BME) was born from recognition that engineers need to help solve emerging biologically based problems that impact medical device design, therapeutics, diagnostics, and basic discovery. While economic indicators point to significant growth in the field, BME students are reporting significant challenges in competing for jobs against traditional engineering graduates (e.g. mechanical and electrical) and finding post-undergraduate employment. BME programs are therefore in great need of curricula that promote clear professional formation and prepare graduates to be effective in a fast growing and changing industry. Moreover, these changes must be implemented in a challenging environment in which technology and stakeholder (e.g. industry, medical schools, regulatory agencies) priorities are changing rapidly. In 2016, our department created a new model of instructional change in which the undergraduate curriculum is closely tied to the evolution of the field of BME, and in which faculty, staff, and students work together to define and implement current content and best practices in teaching. Through an Iterative Instructional Design Sequence, the department has implemented seven BME-in-Practice modules over two years. A total of 36 faculty, post docs, doctoral candidates, master’s students, and fourth year students have participated in creating the one-credit BME-in-Practice Modules exploring Tissue Engineering, Medical Device Development, Drug Development, Regulations, and Neural Engineering. A total of 23 post docs, graduate students and undergraduates participated on a teaching team responsible for teaching a BME-in-Practice module. Each module was developed to be four weeks long and met at least six hour/week. Two of the seven Modules were iterated upon from year one to year two. Modules were designed to be highly experiential where the majority of work can be completed in the classroom. A total of 50 unique undergraduates elected to enroll in the seven Modules, 73.33% of which were women. Data collected over the last two years indicate that Module students perceived significant learning outcomes and the Module teaching teams were successful in creating student centered environments. Results suggest that this mechanism enables effective, rapid adaptation of BME curriculum to meet the changing needs of BME students, while increasing student-centered engagement in the engineering classroom. Findings also suggest that this curricular is an example of an intentional curricular change that is particularly impactful for women engineering students. 
    more » « less
  3. Background Over the past 2 decades, various desktop and mobile telemedicine systems have been developed to support communication and care coordination among distributed medical teams. However, in the hands-busy care environment, such technologies could become cumbersome because they require medical professionals to manually operate them. Smart glasses have been gaining momentum because of their advantages in enabling hands-free operation and see-what-I-see video-based consultation. Previous research has tested this novel technology in different health care settings. Objective The aim of this study was to review how smart glasses were designed, used, and evaluated as a telemedicine tool to support distributed care coordination and communication, as well as highlight the potential benefits and limitations regarding medical professionals’ use of smart glasses in practice. Methods We conducted a literature search in 6 databases that cover research within both health care and computer science domains. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to review articles. A total of 5865 articles were retrieved and screened by 3 researchers, with 21 (0.36%) articles included for in-depth analysis. Results All of the reviewed articles (21/21, 100%) used off-the-shelf smart glass device and videoconferencing software, which had a high level of technology readiness for real-world use and deployment in care settings. The common system features used and evaluated in these studies included video and audio streaming, annotation, augmented reality, and hands-free interactions. These studies focused on evaluating the technical feasibility, effectiveness, and user experience of smart glasses. Although the smart glass technology has demonstrated numerous benefits and high levels of user acceptance, the reviewed studies noted a variety of barriers to successful adoption of this novel technology in actual care settings, including technical limitations, human factors and ergonomics, privacy and security issues, and organizational challenges. Conclusions User-centered system design, improved hardware performance, and software reliability are needed to realize the potential of smart glasses. More research is needed to examine and evaluate medical professionals’ needs, preferences, and perceptions, as well as elucidate how smart glasses affect the clinical workflow in complex care environments. Our findings inform the design, implementation, and evaluation of smart glasses that will improve organizational and patient outcomes. 
    more » « less
  4. The world faces mounting challenges related to food, energy, and water security. Modeling approaches have emerged in the last decade to address this problem with mixed outcomes across a range of boundaries, including local, regional, national, and by research agendas. This paper delves into a comprehensive meta-analysis of the literature to identify the prevalence and strengths of these emergent approaches on the agendas they were applied to, the boundary levels, nexus dimensions, and the perspectives of the social and political dynamics. The research highlights the critical gaps that remain in the intersection of the different nexus agendas. A crucial observation was the scarcity of food, energy, and water models that incorporate technology adoption and economic implementation of nexus projects. On the core dimensions of the nexus, there is an important opportunity to include ecosystems, soil health, human health, and waste as key nexus dimensions. Although it is difficult to include social and political dynamics in nexus studies, this research identified proxies including (1) stakeholder interactions; (2) the intersection of access, security, and education; and (3) trade patterns and measures of prosperity. 
    more » « less
  5. Despite broad scientific interest in harnessing the power of Earth’s microbiomes, knowledge gaps hinder their efficient use for addressing urgent societal and environmental challenges. We argue that structuring research and technology developments around a design– build–test–learn (DBTL) cycle will advance microbiome engineering and spur new discoveries of the basic scientific principles governing microbiome function. In this Review, we present key elements of an iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, including top- down and bottom- up design processes, synthetic and self- assembled construction methods, and emerging tools to analyse microbiome function. These approaches can be used to harness microbiomes for broad applications related to medicine, agriculture, energy and the environment. We also discuss key challenges and opportunities of each approach and synthesize them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a DBTL framework will rapidly advance microbiome- based biotechnologies aimed at improving human and animal health, agriculture and enabling the bioeconomy. 
    more » « less