skip to main content


Title: Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene
Cosmogenic-nuclide concentrations in subglacial bedrock cores show that theWest Antarctic Ice Sheet (WAIS) at a site between Thwaites and Pope glaciers was at least 35m thinner than present in the past several thousand years and then subsequently thickened. This is important because of concern that present thinning and grounding line retreat at these and nearby glaciers in the Amundsen Sea Embayment may irreversibly lead to deglaciation of significant portions of the WAIS, with decimeter- to meter-scale sea level rise within decades to centuries. A past episode of ice sheet thinning that took place in a similar, although not identical, climate was not irreversible.We propose that the past thinning– thickening cycle was due to a glacioisostatic rebound feedback, similar to that invoked as a possible stabilizing mechanism for current grounding line retreat, in which isostatic uplift caused by Early Holocene thinning led to relative sea level fall favoring grounding line advance.  more » « less
Award ID(s):
2317097
NSF-PAR ID:
10499412
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
EGU
Date Published:
Journal Name:
The Cryosphere
ISSN:
1787–1801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Cosmogenic-nuclide concentrations in subglacial bedrock cores show that the West Antarctic Ice Sheet (WAIS) at a site between Thwaites and Pope glaciers was at least 35 m thinner than present in the past several thousand years and then subsequently thickened. This is important because of concern that present thinning and grounding line retreat at these and nearby glaciers in the Amundsen Sea Embayment may irreversibly lead to deglaciation of significant portions of the WAIS, with decimeter- to meter-scale sea level rise within decades to centuries. A past episode of ice sheet thinning that took place in a similar, although not identical, climate was not irreversible. We propose that the past thinning–thickening cycle was due to a glacioisostatic rebound feedback, similar to that invoked as a possible stabilizing mechanism for current grounding line retreat, in which isostatic uplift caused by Early Holocene thinning led to relative sea level fall favoring grounding line advance. 
    more » « less
  2. Abstract. Chronologies of glacier deposits in the Transantarctic Mountains provide important constraints on grounding-line retreat during the last deglaciation in the Ross Sea. However, between Beardmore Glacier and Ross Island – a distance of some 600 km – the existing chronologies are generally sparse and far from the modern grounding line, leaving the past dynamics of this vast region largely unconstrained. We present exposure ages of glacial deposits at three locations alongside the Darwin–Hatherton Glacier System – including within 10 km of the modern grounding line – that record several hundred meters of Late Pleistocene to Early Holocene thickening relative to present. As the ice sheet grounding line in the Ross Sea retreated, Hatherton Glacier thinned steadily from about 9 until about 3 ka. Our data are equivocal about the maximum thickness and Mid-Holocene to Early Holocene history at the mouth of Darwin Glacier, allowing for two conflicting deglaciation scenarios: (1) ∼500 m of thinning from 9 to 3 ka, similar to Hatherton Glacier, or (2) ∼950 m of thinning, with a rapid pulse of ∼600 m thinning at around 5 ka. We test these two scenarios using a 1.5-dimensional flowband model, forced by ice thickness changes at the mouth of Darwin Glacier and evaluated by fit to the chronology of deposits at Hatherton Glacier. The constraints from Hatherton Glacier are consistent with the interpretation that the mouth of Darwin Glacier thinned steadily by ∼500 m from 9 to 3 ka. Rapid pulses of thinning at the mouth of Darwin Glacier are ruled out by the data at Hatherton Glacier. This contrasts with some of the available records from the mouths of other outlet glaciers in the Transantarctic Mountains, many of which thinned by hundreds of meters over roughly a 1000-year period in the Early Holocene. The deglaciation histories of Darwin and Hatherton glaciers are best matched by a steady decrease in catchment area through the Holocene, suggesting that Byrd and/or Mulock glaciers may have captured roughly half of the catchment area of Darwin and Hatherton glaciers during the last deglaciation. An ensemble of three-dimensional ice sheet model simulations suggest that Darwin and Hatherton glaciers are strongly buttressed by convergent flow with ice from neighboring Byrd and Mulock glaciers, and by lateral drag past Minna Bluff, which could have led to a pattern of retreat distinct from other glaciers throughout the Transantarctic Mountains. 
    more » « less
  3. Using observations of basal topography, ice thickness and modern accumulation rates, we use theory and a dynamic flowline model to examine the sensitivity of Antarctica's Foundation Ice Stream to changes in sea level, accumulation and buttressing at the grounding line. Our sensitivity studies demonstrate that the steep, upward-sloping basal topography inland from the grounding line serves to stabilize retreat of the ice stream, while the upward-sloping submarine topography downstream from the grounding line creates the potential for significant advance under conditions of modest sea-level lowering and/or increased accumulation rate. Extrapolating from Foundation Ice Stream, many nearby Weddell Sea sector ice streams are in a similar configuration, suggesting that the historical and projected responses of this sector's ice streams may contrast with those in the Amundsen or Ross Sea sectors. This work reaffirms that the greatest concerns for rapid West Antarctic Ice Sheet (WAIS) retreat are locations of reverse slopes, muted basal topography and limited lateral support. 
    more » « less
  4. Abstract

    Geological records of ice sheet collapse can provide perspective on the ongoing retreat of grounded and floating ice. An abrupt retreat of the West Antarctic Ice Sheet (WAIS) that occurred during the early deglaciation is well recorded on the eastern Ross Sea continental shelf. There, an ice shelf breakup at 12.3 ± 0.6 cal. (calibrated) kyr BP caused accelerated ice-mass loss from the Bindschadler Ice Stream (BIS). The accelerated mass loss led to a significant negative mass balance that re-organized WAIS flow across the central and eastern Ross Sea. By ~ 11.5 ± 0.3 cal kyr BP, dynamic thinning of grounded ice triggered a retreat that opened a ~ 200-km grounding-line embayment on the Whales Deep Basin (WDB) middle continental shelf. Here, we reconstruct the pattern, duration and rate of retreat from a backstepping succession of small-scale grounding-zone ridges that formed on the embayment’s eastern flank. We used two end-member paleo-sediment fluxes, i.e., accumulation rates, to convert the cumulative sediment volumes of the ridge field to elapsed time for measured distances of grounding-line retreat. The end-members fluxes correspond to deposition rates for buttressed and unbuttressed ice stream flow. Both scenarios require sustained rapid retreat that exceeded several centuries. Grounding-line retreat is estimated to have averaged between ~ 100 ± 32 and ~ 700 ± 79 ma−1. The evidence favors the latter scenario because iceberg furrows that cross cut the ridges in deep water require weakly buttressed flow as the embayment opened. In comparison with the modern grounding-zone dynamics, this paleo-perspective provides confidence in model projections that a large-scale sustained contraction of grounded ice is underway in several Pacific-Ocean sectors of the WAIS.

     
    more » « less
  5. Abstract

    How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet’s stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries.

     
    more » « less