Cyber-physical systems (CPSs) leverage computations to operate physical objects in real-world environments, and increasingly more CPS-based applications have been designed for life-critical applications. Therefore, any vulnerability in such a system can lead to severe consequences if exploited by adversaries. In this paper, we present a data predictive recovery system to safeguard the CPS from sensor attacks, assuming that we can identify compromised sensors from data.
Our recovery system guarantees that the CPS will never encounter unsafe states and will smoothly recover to a target set within a conservative deadline.
It also guarantees that the CPS will remain within the target set for a specified period.
Major highlights of our paper include (i) the recovery procedure works on nonlinear systems, (ii) the method leverages uncorrupted sensors to relieve uncertainty accumulation, and (iii) an extensive set of experiments on various nonlinear benchmarks that demonstrate our framework's performance and efficiency.
more »
« less
This content will become publicly available on December 5, 2024
Learn-to-Respond: Sequence-Predictive Recovery from Sensor Attacks in Cyber-Physical Systems
While many research efforts on Cyber-Physical System (CPS) security are devoted to attack detection, how to respond to the detected attacks receives little attention. Attack response is essential since serious consequences can be caused if CPS continues to act on the compromised data by the attacks. In this work, we aim at the response to sensor attacks and adapt machine learning techniques to recover CPSs from such attacks. There are, however, several major challenges. i) Cumulative error. Recovery needs to estimate the current state of a physical system (e.g., the speed of a vehicle) in order to know if the system has been driven to a certain state. However, the estimation error accumulates over time in presence of compromised sensors. ii) Timely response. A fast response is needed since slow recovery not only comes with large estimation errors but also may be too late to avoid irreparable consequences. To address these challenges, we propose a novel learning-based solution, named sequence-predictive recovery (or SeqRec). To reduce the estimation error, SeqRec designs the first sequence-to-sequence (Seq2Seq) model to uncover the temporal and spatial dependencies among sensors and control demands, and then uses the model to estimate system states using the trustworthy data logged in history. To achieve an adequate and fast recovery, SeqRec designs the second Seq2Seq model that considers both the current time step using the remaining intact sensors and the future time steps based on a given target state, and embeds the model into a novel recovery control algorithm to drive a physical system back to that state. Experimental results demonstrate that SeqRec can effectively and efficiently recover CPSs from sensor attacks.
more »
« less
- Award ID(s):
- 2333980
- PAR ID:
- 10499416
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Real-Time Systems Symposium (RTSS)
- ISBN:
- 979-8-3503-2857-8
- Page Range / eLocation ID:
- 78 to 91
- Format(s):
- Medium: X
- Location:
- Taipei, Taiwan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cyber-physical systems (CPSs) rely on computing components to control physical objects, and have been widely used in real-world life-critical applications. However, a CPS has security risks by nature due to the integration of many vulnerable subsystems, which adversaries exploit to inflict serious consequences. Among various attacks, sensor attacks pose a particularly significant threat, where an attacker maliciously modifies sensor measurements to drift system behavior. There is a lot of work in sensor attack prevention and detection. Nevertheless, an essential problem is overlooked: recovery--what to do after detecting a sensor attack, which needs to safely and timely bring a CPS back. We aim to highlight the need to investigate this problem, outline its four key challenges, and provide a brief overview of initial solutions in the field.more » « less
-
The increasing autonomy and connectivity in cyber-physical systems (CPS) come with new security vulnerabilities that are easily exploitable by malicious attackers to spoof a system to perform dangerous actions. While the vast majority of existing works focus on attack prevention and detection, the key question is “what to do after detecting an attack?”. This problem attracts fairly rare attention though its significance is emphasized by the need to mitigate or even eliminate attack impacts on a system. In this article, we study this attack response problem and propose novel real-time recovery for securing CPS. First, this work’s core component is a recovery control calculator using a Linear-Quadratic Regulator (LQR) with timing and safety constraints. This component can smoothly steer back a physical system under control to a target state set before a safe deadline and maintain the system state in the set once it is driven to it. We further propose an Alternating Direction Method of Multipliers (ADMM) based algorithm that can fast solve the LQR-based recovery problem. Second, supporting components for the attack recovery computation include a checkpointer, a state reconstructor, and a deadline estimator. To realize these components respectively, we propose (i) a sliding-window-based checkpointing protocol that governs sufficient trustworthy data, (ii) a state reconstruction approach that uses the checkpointed data to estimate the current system state, and (iii) a reachability-based approach to conservatively estimate a safe deadline. Finally, we implement our approach and demonstrate its effectiveness in dealing with totally 15 experimental scenarios which are designed based on 5 CPS simulators and 3 types of sensor attacks.more » « less
-
Industries are embracing information technology and constructing more robust machines known as Cyber-Physical Systems(CPS) to automate processes. CPSs are envisioned to be pervasive, coordinating, and integrating computation, sensing, actuation, and physical processes. CPSs have various applications in life-critical scenarios, where their performance and reliability can have direct impacts on human safety and well-being. However, CPSs are vulnerable to malicious attacks, and researchers have developed detectors to identify such attacks in different contexts. Surprisingly, little work has been done to detect attacks on the actuators of CPS. Furthermore, actuators face a high risk of optimal hidden attacks designed by powerful attackers, which can push them into an unsafe state without detection. To the best of our knowledge, no such attacks on actuators have been developed yet. In this paper, we design an optimal hidden attack for actuators and evaluate its effectiveness. First, we develop a mathematical model for actuators and then create a linear program for convex optimization. Second, we solve the optimization problem and simulate the optimal attack.more » « less
-
Cyber-Physical Systems (CPS) have been increasingly subject to cyber-attacks including code injection attacks. Zero day attacks further exasperate the threat landscape by requiring a shift to defense in depth approaches. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if safety-critical applications such as automobiles are compromised. Moving target defense techniques such as instruction set randomization (ISR) have been commonly proposed to address these types of attacks. However, under current implementations an attack can result in system crashing which is unacceptable in CPS. As such, CPS necessitate proper control reconfiguration mechanisms to prevent a loss of availability in system operation. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating ISR, detection, and recovery capabilities that ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection attacks and reconfiguring the controller in real-time. The developed framework is demonstrated with an autonomous vehicle case study.more » « less