We consider a prototypical intelligent transportation
system with a control law that is specifically designed to avoid
collisions. We experimentally demonstrate that, nevertheless, an
attack on a position sensor can result in collisions between
vehicles. This is a consequence of the feeding of malicious
sensor measurements to the controller and the collision avoidance
module built into the system. This is an instance of the
broader concern of cybersecurity vulnerabilities opened up by
the increasing integration of critical physical infrastructures with
the cyber system. We consider a solution based on “dynamic
watermarking” of signals to detect and stop such attacks on
cyber-physical systems. We show how dynamic watermarking
can handle nonlinearities arising in vehicular models. We then
experimentally demonstrate that employing this nonlinear extension
indeed restores the property of collision freedom even in the
presence of attacks.
more »
« less
This content will become publicly available on December 5, 2024
Catch You if Pay Attention: Temporal Sensor Attack Diagnosis Using Attention Mechanisms for Cyber-Physical Systems
In Cyber-Physical Systems (CPS), sensor data integrity is crucial since acting on malicious sensor data can cause serious consequences, given the tight coupling between cyber components and physical systems. While extensive works focus on sensor attack detection, attack diagnosis that aims to find out when the attack starts has not been well studied yet. This temporal sensor attack diagnosis problem is equally important because many recovery methods rely on the accurate determination of trustworthy historical data. To address this problem, we propose a lightweight data-driven solution to achieve real-time sensor attack diagnosis. Our novel solution consists of five modules, with the attention and diagnosis ones as the core. The attention module not only helps accurately predict future sensor measurements but also computes statistical attention scores for the diagnosis module. Based on our unique observation that the score fluctuates sharply once an attack launches, the diagnosis module determines the onset of an attack through monitoring the fluctuation. Evaluated on high-dimensional high-fidelity simulators and a testbed, our solution demonstrates robust and accurate temporal diagnosis results while incurring millisecond-level computational overhead on Raspberry Pi.
more »
« less
- Award ID(s):
- 2333980
- PAR ID:
- 10499417
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Real-Time Systems Symposium (RTSS)
- ISBN:
- 979-8-3503-2857-8
- Page Range / eLocation ID:
- 64 to 77
- Format(s):
- Medium: X
- Location:
- Taipei, Taiwan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cyber-physical systems (CPS) have been increasingly attacked by hackers. CPS are especially vulnerable to attackers that have full knowledge of the system's configuration. Therefore, novel anomaly detection algorithms in the presence of a knowledgeable adversary need to be developed. However, this research is still in its infancy due to limited attack data availability and test beds. By proposing a holistic attack modeling framework, we aim to show the vulnerability of existing detection algorithms and provide a basis for novel sensor-based cyber-attack detection. Stealthy Attack GEneration (SAGE) for CPS serves as a tool for cyber-risk assessment of existing systems and detection algorithms for practitioners and researchers alike. Stealthy attacks are characterized by malicious injections into the CPS through input, output, or both, which produce bounded changes in the detection residue. By using the SAGE framework, we generate stealthy attacks to achieve three objectives: (i) Maximize damage, (ii) Avoid detection, and (iii) Minimize the attack cost. Additionally, an attacker needs to adhere to the physical principles in a CPS (objective iv). The goal of SAGE is to model worst-case attacks, where we assume limited information asymmetries between attackers and defenders (e.g., insider knowledge of the attacker). Those worst-case attacks are the hardest to detect, but common in practice and allow understanding of the maximum conceivable damage. We propose an efficient solution procedure for the novel SAGE optimization problem. The SAGE framework is illustrated in three case studies. Those case studies serve as modeling guidelines for the development of novel attack detection algorithms and comprehensive cyber-physical risk assessment of CPS. The results show that SAGE attacks can cause severe damage to a CPS, while only changing the input control signals minimally. This avoids detection and keeps the cost of an attack low. This highlights the need for more advanced detection algorithms and novel research in cyber-physical security.more » « less
-
The increasing autonomy and connectivity in cyber-physical systems (CPS) come with new security vulnerabilities that are easily exploitable by malicious attackers to spoof a system to perform dangerous actions. While the vast majority of existing works focus on attack prevention and detection, the key question is “what to do after detecting an attack?”. This problem attracts fairly rare attention though its significance is emphasized by the need to mitigate or even eliminate attack impacts on a system. In this article, we study this attack response problem and propose novel real-time recovery for securing CPS. First, this work’s core component is a recovery control calculator using a Linear-Quadratic Regulator (LQR) with timing and safety constraints. This component can smoothly steer back a physical system under control to a target state set before a safe deadline and maintain the system state in the set once it is driven to it. We further propose an Alternating Direction Method of Multipliers (ADMM) based algorithm that can fast solve the LQR-based recovery problem. Second, supporting components for the attack recovery computation include a checkpointer, a state reconstructor, and a deadline estimator. To realize these components respectively, we propose (i) a sliding-window-based checkpointing protocol that governs sufficient trustworthy data, (ii) a state reconstruction approach that uses the checkpointed data to estimate the current system state, and (iii) a reachability-based approach to conservatively estimate a safe deadline. Finally, we implement our approach and demonstrate its effectiveness in dealing with totally 15 experimental scenarios which are designed based on 5 CPS simulators and 3 types of sensor attacks.more » « less
-
Cyber-physical systems (CPSs) rely on computing components to control physical objects, and have been widely used in real-world life-critical applications. However, a CPS has security risks by nature due to the integration of many vulnerable subsystems, which adversaries exploit to inflict serious consequences. Among various attacks, sensor attacks pose a particularly significant threat, where an attacker maliciously modifies sensor measurements to drift system behavior. There is a lot of work in sensor attack prevention and detection. Nevertheless, an essential problem is overlooked: recovery--what to do after detecting a sensor attack, which needs to safely and timely bring a CPS back. We aim to highlight the need to investigate this problem, outline its four key challenges, and provide a brief overview of initial solutions in the field.more » « less
-
While many research efforts on Cyber-Physical System (CPS) security are devoted to attack detection, how to respond to the detected attacks receives little attention. Attack response is essential since serious consequences can be caused if CPS continues to act on the compromised data by the attacks. In this work, we aim at the response to sensor attacks and adapt machine learning techniques to recover CPSs from such attacks. There are, however, several major challenges. i) Cumulative error. Recovery needs to estimate the current state of a physical system (e.g., the speed of a vehicle) in order to know if the system has been driven to a certain state. However, the estimation error accumulates over time in presence of compromised sensors. ii) Timely response. A fast response is needed since slow recovery not only comes with large estimation errors but also may be too late to avoid irreparable consequences. To address these challenges, we propose a novel learning-based solution, named sequence-predictive recovery (or SeqRec). To reduce the estimation error, SeqRec designs the first sequence-to-sequence (Seq2Seq) model to uncover the temporal and spatial dependencies among sensors and control demands, and then uses the model to estimate system states using the trustworthy data logged in history. To achieve an adequate and fast recovery, SeqRec designs the second Seq2Seq model that considers both the current time step using the remaining intact sensors and the future time steps based on a given target state, and embeds the model into a novel recovery control algorithm to drive a physical system back to that state. Experimental results demonstrate that SeqRec can effectively and efficiently recover CPSs from sensor attacks.more » « less