skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The High-mass X-Ray Binary Luminosity Functions of Dwarf Galaxies
Abstract Drawing from the Chandra archive and using a carefully selected set of nearby dwarf galaxies, we present a calibrated high-mass X-ray binary (HMXB) luminosity function in the low-mass galaxy regime and search for an already hinted at dependence on metallicity. Our study introduces a new sample of local dwarf galaxies (D< 12.5 Mpc andM*< 5 × 109M), expanding the specific star formation rates (sSFR) and gas-phase metallicities probed in previous investigations. Our analysis of the observed X-ray luminosity function indicates a shallower power-law slope for the dwarf galaxy HMXB population. In our study, we focus on dwarf galaxies that are more representative in terms of sSFR compared to prior work. In this regime, the HMXB luminosity function exhibits significant stochastic sampling at high luminosities. This likely accounts for the pronounced scatter observed in the galaxy-integrated HMXB population’sLX/SFR versus metallicity for our galaxy sample. Our calibration is necessary to understand the active galactic nuclei content of low-mass galaxies identified in current and future X-ray survey fields and has implications for binary population synthesis models, as well as X-ray-driven cosmic heating in the early Universe.  more » « less
Award ID(s):
2106453
PAR ID:
10499440
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
965
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 67
Size(s):
Article No. 67
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present an analysis of ∼235 ks of Chandra observations obtained over ∼19 yr of the nearby dwarf starburst galaxy IC 10 in order to study the X-ray variability and X-ray luminosity function (XLF) of its X-ray binary (XRB) population. We identify 23 likely XRBs within the Two Micron All Sky SurveyKSisophotal radius and find the distributions of their dynamic ranges and duty cycles are consistent with a young, high-mass XRB (HMXB) population dominated by supergiant-fed systems, consistent with previous work. In general, we find that brighter HMXBs (those withLX≳ several ×1036erg s−1) have higher duty cycles (i.e., are more persistent X-ray sources) than fainter objects, and the dynamic ranges of the sgHMXBs in the lower-metallicity environment of IC 10 are higher than what is observed for comparable systems in the Milky Way. After filtering out foreground stars on the basis of Gaia parallaxes, we construct, for the first time, the XLF of IC 10. We then use the XLF to model the star formation history of the galaxy, finding that a very recent (3–8 Myr) burst of star formation with a rate of ∼0.5Myr−1is needed to adequately explain the observed bright end (LX∼ 1037erg s−1) of the HMXB XLF. 
    more » « less
  2. Abstract We explore the characteristics of actively accreting massive black holes (MBHs) within dwarf galaxies in the Romulus25cosmological hydrodynamic simulation. We examine the MBH occupation fraction, X-ray active fractions, and active galactic nucleus (AGN) scaling relations within dwarf galaxies of stellar mass 108M<Mstar< 1010Mout to redshiftz= 2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity atMstar< 3 × 1010M,M200< 3 × 1011M. Local dwarf AGN in Romulus25follow observed scaling relations between AGN X-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable X-ray observations. Sincez= 2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low X-ray luminosities and high contamination from X-ray binaries and the hot interstellar medium that are undetectable by current X-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies and include many MBHs that are undermassive relative to their host galaxy’s stellar mass. Their detection relies on not only greater instrument sensitivity but also better modeling of X-ray contaminants or multiwavelength surveys. Our results indicate that dwarf AGN were substantially more active in the past, despite having low luminosity today, and that future deep X-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at leastz= 2. 
    more » « less
  3. Abstract We present the discovery of a luminous X-ray active galactic nucleus (AGN) in the dwarf galaxy merger RGG 66. The black hole is predicted to have a mass ofMBH∼ 105.4Mand to be radiating close to its Eddington limit (Lbol/LEdd∼ 0.75). The AGN in RGG 66 is notable both for its presence in a late-stage dwarf–dwarf merger and for its luminosity ofL2–10 keV= 1042.2erg s−1, which is among the most powerful AGNs known in nearby dwarf galaxies. The X-ray spectrum has a best-fit photon index of Γ = 2.4 and an intrinsic absorption ofNH∼ 1021cm−2. These results come from a follow-up Chandra X-ray Observatory study of four irregular/disturbed dwarf galaxies with evidence for hosting AGNs based on optical spectroscopy. The remaining three dwarf galaxies do not have detectable X-ray sources with upper limits ofL2–10 keV≲ 1040erg s−1. Taken at face value, our results on RGG 66 suggest that mergers may trigger the most luminous of AGNs in the dwarf galaxy regime, just as they are suspected to do in more massive galaxy mergers. 
    more » « less
  4. Abstract Due to their inability to self-regulate, ultrafaint dwarfs are sensitive to prescriptions in subgrid physics models that converge and regulate at higher masses. We use high-resolution cosmological simulations to compare the effect of bursty star formation histories (SFHs) on dwarf galaxy structure for two different subgrid supernova (SN) feedback models, superbubble and blastwave, in dwarf galaxies with stellar masses from 5000 <M*/M< 109. We find that in the “MARVEL-ous Dwarfs” suite both feedback models produce cored galaxies and reproduce observed scaling relations for luminosity, mass, and size. Our sample accurately predicts the average stellar metallicity at higher masses, however low-mass dwarfs are metal poor relative to observed galaxies in the Local Group. We show that continuous bursty star formation and the resulting stellar feedback are able to create dark matter (DM) cores in the higher dwarf galaxy mass regime, while the majority of ultrafaint and classical dwarfs retain cuspy central DM density profiles. We find that the effective core formation peaks atM*/Mhalo≃ 5 × 10−3for both feedback models. Both subgrid SN models yield bursty SFHs at higher masses; however, galaxies simulated with superbubble feedback reach maximum mean burstiness values at lower stellar mass fractions relative to blastwave feedback. As a result, core formation may be better predicted by stellar mass fraction than the burstiness of SFHs. 
    more » « less
  5. Abstract We present multiwavelength characterization of 65 high-mass X-ray binary (HMXB) candidates in M33. We use the Chandra ACIS survey of M33 (ChASeM33) catalog to select hard X-ray point sources that are spatially coincident with UV-bright point-source optical counterparts in the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region catalog, which covers the inner disk of M33 at near-IR, optical, and near-UV wavelengths. We perform spectral energy distribution fitting on multiband photometry for each point-source optical counterpart to measure its physical properties including mass, temperature, luminosity, and radius. We find that the majority of the HMXB companion star candidates are likely B-type main-sequence stars, suggesting that the HMXB population of M33 is dominated by Be X-ray binaries (Be-XRBs), as is seen in other Local Group galaxies. We use spatially resolved recent star formation history maps of M33 to measure the age distribution of the HMXB candidate sample and the HMXB production rate for M33. We find a bimodal distribution for the HMXB production rate over the last 80 Myr, with a peak at ∼10 and ∼40 Myr, which match theoretical formation timescales for the most massive HMXBs and Be-XRBs, respectively. We measure an HMXB production rate of 107–136 HMXBs/(Myr−1) over the last 50 Myr and 150–199 HMXBs/(Myr−1) over the last 80 Myr. For sources with compact object classifications from overlapping NuSTAR observations, we find a preference for giant/supergiant companion stars in black hole HMXBs and main-sequence companion stars in neutron star HMXBs. 
    more » « less