skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Generalized Townsend's Theory for Paschen Curves in Planar, Cylindrical, and Spherical Geometries in Planetary Atmospheres
Abstract In this work, we focus on plasma discharges produced between two electrodes with a high potential difference, resulting in the ionization of the neutral particles supporting a current in a gaseous medium. At low currents and low temperatures, this process can create luminescent emissions: glow and corona discharges. The parallel plate geometry used in Townsend's theory lets us develop a theoretical formalism, with explicit solutions for the critical voltage effectively reproducing experimental Paschen curves. However, most discharge processes occur in non‐parallel plate geometries, such as discharges between particles in multiphase systems and between cylindrical conductors. Here, we propose a generalization of the classic parallel plate configurations to concentric spherical and coaxial cylindrical geometries in Earth, Mars, Titan, and Venus atmospheres. In a spherical case, a small radius effectively represents a sharp tip rod, while larger, centimeter‐scale radii represent blunted tips. In cylindrical geometries, small radii resemble thin wires. We solve continuity equations in the gap and estimate a critical radius and minimum breakdown voltage that allows the formation of a glow discharge. We show that glow coronæ form more easily in Mars's low‐pressure, CO2‐rich atmosphere than in Earth's high‐pressure, N2‐rich atmosphere. Additionally, we present breakdown criteria for Titan and Venus, two planets where discharge processes have been postulated. We further demonstrate that critical voltage minima occur at 0.5 cm⋅Torr for all three investigated geometries, suggesting easier initiation around millimeter‐size particles in dust and water clouds. This approach could be readily extended to examine other multiphase flows with inertial particles.  more » « less
Award ID(s):
2047863
PAR ID:
10499450
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
7
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hypothesis: The dip coating of suspensions made of monodisperse non-Brownian spherical particles dispersed in a Newtonian fluid leads to different coating regimes depending on the ratio of the particle diameter to the thickness of the film entrained on the substrate. In particular, dilute particles dispersed in the liquid are entrained only above a threshold value of film thickness. In the case of anisotropic particles, in particular fibers, the smallest characteristic dimension will control the entrainment of the particle. Furthermore, it is possible to control the orientation of the anisotropic particles depending on the substrate geometry. In the thick film regime, the Landau-Levich-Derjaguin model remains valid if one account for the change in viscosity. Experiment: To test the hypotheses, we performed dip-coating experiments with dilute suspensions of non-Brownian fibers with different length-to-diameter aspect ratios. We characterize the number of fibers entrained on the surface of the substrate as a function of the withdrawal velocity, allowing us to estimate a threshold capillary number below which all the particles remain in the liquid bath. Besides, we measure the angular distribution of the entrained fibers for two different substrate geometries: flat plates and cylindrical rods. We then measure the film thickness for more concentrated fiber suspensions. Findings: The entrainment of the fibers on a flat plate and a cylindrical rod is primarily controlled by the smaller characteristic length of the fibers: their diameter. At first order, the entrainment threshold scales similarly to that of spherical particles. The length of the fibers only appears to have a minor influence on the entrainment threshold. No preferential alignment is observed for non-Brownian fibers on a flat plate, except for very thin films, whereas the fibers tend to align themselves along the axis of a cylindrical rod for a large enough ratio of the fiber length to the radius of the cylindrical rod. The Landau-Levich-Derjaguin law is recovered for more concentrated suspension by introducing an effective capillary number accounting for the change in viscosity. 
    more » « less
  2. Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striations in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures. 
    more » « less
  3. Abstract Streamers play a key role in the formation and propagation of lightning channels. In nature streamers rarely appear alone. Their ensemble behavior is very complex and challenging to describe. For instance, the intricate dynamics within the streamer zone of negative lightning leaders give rise to space stems, which help advance the stepped-leader. Another example is how the increasing morphological complexity of sprites can lead to higher sprite current and greater energy deposition in the mesosphere. Insights into the complex dynamics of a streamer corona can be obtained from laboratory experiments that allow us to control the conditions of streamer formation. Based on simultaneous nanosecond-temporal-resolution photography, and measurements of voltage, current, and x-ray emissions, we report the characteristics of negative laboratory streamers in 88 kPa of atmosphere. The streamers are produced at peak voltages of 62.2 ± 3.8 kV in a point-to-plane discharge gap of 6 cm. While all discharges were driven to the same peak voltage, the discharges occurred at different stages of the relatively slow voltage rise (177 ns), allowing us to study discharge properties as a function of onset voltage. The onset voltage ranged between 24 and 67 kV, but x-ray emissions were observed to only occur above 53 kV, with x-ray burst energies scaling quadratically with voltage. The average delay between the current pulse and x-ray emission was found to be 3.5 ± 0.5 ns, indicating that runaway electrons are produced during the streamer inception phase or no later than the transition stage, when the inception cloud is breaking into streamer filaments. During this short time span, runaway electrons can traverse the gap, hit the ground plate and produce bremsstrahlung x-ray photons. However, streamers themselves cannot traverse more than 3.5 mm across the gap, which supports the idea that runaway electron production is not associated to streamer connection to the ground electrode. 
    more » « less
  4. In order to initiate streamers and leaders under thunderstorm conditions the electric field should reach values higher than the critical breakdown field Ek (i.e., similar to 30 kV/cm/atm. However, the maximum electric field in thunderstorms measured by balloons is similar to 6-9 kV/cm/atm. In present work, to achieve the electric field amplification required for streamer initiation, a system of two approaching spherical hydrometeors is investigated. Streamer initiation is determined from a Meek number, describing electron multiplication in fields above Ek. We have found the relationships between radii of particles for successful streamer initiation in the gap between these two particles and also on the outside periphery of the two-particle system when the particles are connected by a discharge channel. Furthermore, we estimated the frequency of streamer initiation using three realistic hydrometeor size model distributions available in the literature and found that the scenario of streamer initiation on the outside periphery is only possible for relatively high electric fields >= 0.5Ek at altitudes of 3 and 6 km. 
    more » « less
  5. Abstract This study delves into the dynamics of cold atmospheric plasma and their interaction within conductive solutions under the unique conditions of nanosecond pulsed discharges (22 kV peak voltage, 10 ns FWHM, 4.5 kV ns−1rate-of-rise). The research focuses on the electrical response, breakdown, and discharge propagation in an argon bubble, submerged in a NaCl solution of varying conductivity. Full or partial discharges were observed at conductivities of 1.5µS cm−1(deionized water) to 1.6 mS cm−1, but no breakdown was observed at 11.0 mS cm−1when reducing the electrode gap. It is demonstrated that at higher conductivity electric breakdown is observed only when the gas bubble comes into direct contact with the electrode and multiple emission nodes were observed at different timescales. These nodes expanded in the central region of the bubble over timescales longer than the initial high-voltage pulse. This work offers a temporal resolution of 2 ns exposure times over the first 30 ns of the initial voltage pulse, and insight into plasma formation over decaying reflected voltage oscillations over 200 ns. 
    more » « less