skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioelectricity in Development, Regeneration, and Cancers” Cell Bio 2023: A Joint Meeting of the American Society of Cell Biology and European Molecular Biology Organization December 2–6, 2023, in Boston, MA, USA
Cell Bio conferences—organized jointly by the American Society of Cell Biology (ASCB) and European Molecular Biology Organization (EMBO)—showcase a diverse global community of the brightest researchers in Cell Biology and in emerging interdisciplinary topics, including bioelectricity. In this report, we briefly overview the Cell Bio 2023 subgroup meeting “Bioelectricity in Development, Regeneration, and Cancers.” This subgroup meeting featured 12 talks (7 Principal Investigators and 5 junior scientists) exploring the role of bioelectricity in endogenous and diseased states in model systems ranging from cells in culture to single-cell organisms such as yeast all the way to mammalian systems (including tools and technology developed for exploring bioelectricity and electrotaxis in cells and tissues). The subgroup meeting concluded with a discussion on the current challenges and opportunities for the field of bioelectricity.  more » « less
Award ID(s):
1945916
PAR ID:
10499555
Author(s) / Creator(s):
; ;
Publisher / Repository:
Mary Ann Liebert
Date Published:
Journal Name:
Bioelectricity
ISSN:
0268-1633
Subject(s) / Keyword(s):
ion channels, bioelectricity, morphogenesis
Format(s):
Medium: X
Location:
Boston, MA
Sponsoring Org:
National Science Foundation
More Like this
  1. Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade, increasing evidence from preclinical models suggests that mesenchymal stromal cells, which are not normally resident in the lung, can be used to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathological remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of “omics” technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference. 
    more » « less
  2. Abstract The field of plant cell biology has a rich history of discovery, going back to Robert Hooke’s discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field. 
    more » « less
  3. null (Ed.)
    Cell-free synthetic biology is a maturing field that aims to assemble biomolecular reactions outside cells for compelling applications in drug discovery, metabolic engineering, biomanufacturing, diagnostics, and education. Cell-free systems have several key features. They circumvent mechanisms that have evolved to facilitate species survival, bypass limitations on molecular transport across the cell wall, enable high-yielding and rapid synthesis of proteins without creating recombinant cells, and provide high tolerance towards toxic substrates or products. Here, we analyze ~750 published patents and ~2000 peer-reviewed manuscripts in the field of cell-free systems. Three hallmarks emerged. First, we found that both patent filings and manuscript publications per year are significantly increasing (five-fold and 1.5-fold over the last decade, respectively). Second, we observed that the innovation landscape has changed. Patent applications were dominated by Japan in the early 2000s before shifting to China and the USA in recent years. Finally, we discovered an increasing prevalence of biotechnology companies using cell-free systems. Our analysis has broad implications on the future development of cell-free synthetic biology for commercial and industrial applications. 
    more » « less
  4. Abstract The third iteration of the Cnidarian Model Systems Meeting (Cnidofest) was held August 14–17th, 2024 at Lehigh University in Bethlehem, PA. The meeting featured presentations from laboratories representing 11 countries, covering a broad range of topics related to cnidarian species. The research highlighted diverse topics, with sessions focused on regeneration, evo-devo, genomics, symbiosis, cell biology, physiology, neurobiology, and development. A notable shift at this meeting was the extent to which established cnidarian model systems have caught up with the classical laboratory models such asDrosophilaand vertebrates, with modern genomic, genetic, and molecular tools now routinely applied. In addition, more cnidarian systems are now being developed for functional studies by the community, enhancing our ability to gain fundamental insights into animal biology that are otherwise difficult in the complex bilaterian model systems. Together, the integration of cnidarian and bilaterian model systems provides researchers with a broader toolkit for selecting animal models best suited to address their specific biological questions. 
    more » « less
  5. The cell-free molecular synthesis of biochemical systems is a rapidly growing field of research. Advances in the Human Genome Project, DNA synthesis, and other technologies have allowed the in vitro construction of biochemical systems, termed cell-free biology, to emerge as an exciting domain of bioengineering. Cell-free biology ranges from the molecular to the cell-population scales, using an ever-expanding variety of experimental platforms and toolboxes. In this review, we discuss the ongoing efforts undertaken in the three major classes of cell-free biology methodologies, namely protein-based, nucleic acids–based, and cell-free transcription–translation systems, and provide our perspectives on the current challenges as well as the major goals in each of the subfields. 
    more » « less