skip to main content


Title: The hazard components of representative key risks. The physical climate perspective
The framework of Representative Key Risks (RKRs) has been adopted by the Intergovernmental Panel on Climate Change Working Group II (WGII) to categorize, assess and communicate a wide range of regional and sectoral key risks from climate change. These are risks expected to become severe due to the potentially detrimental convergence of changing climate conditions with the exposure and vulnerability of human and natural systems. Other papers in this special issue treat each of eight RKRs holistically by assessing their current status and future evolution as a result of this convergence. However, in these papers, such assessment cannot always be organized according to a systematic gradation of climatic changes. Often the big-picture evolution of risk has to be extrapolated from either qualitative effects of “low”, “medium” and “high” warming, or limited/focused analysis of the consequences of particular mitigation choices (e.g., benefits of limiting warming to 1.5 or 2C), together with consideration of the socio-economic context and possible adaptation choices. In this study we offer a representation – as systematic as possible given current literature and assessments – of the future evolution of the hazard components of RKRs. We identify the relevant hazards for each RKR, based upon the WGII authors’ assessment, and we report on their current state and expected future changes in magnitude, intensity and/or frequency, linking these changes to Global Warming Levels (GWLs) to the extent possible. We draw on the assessment of changes in climatic impact-drivers relevant to RKRs described in the 6th Assessment Report by Working Group I supplemented when needed by more recent literature. For some of these quantities - like regional trends in oceanic and atmospheric temperature and precipitation, some heat and precipitation extremes, permafrost thaw and Northern Hemisphere snow cover - a strong and quantitative relationship with increasing GWLs has been identified. For others - like frequency and intensity of tropical cyclones and extra-tropical storms, and fire weather - that link can only be described qualitatively. For some processes - like the behavior of ice sheets, or changes in circulation dynamics - large uncertainties about the effects of different GWLs remain, and for a few others - like ocean pH and air pollution - the composition of the scenario of anthropogenic emissions is most relevant, rather than the warming reached. In almost all cases, however, the basic message remains that every small increment in CO2 concentration in the atmosphere and associated warming will bring changes in climate phenomena that will contribute to increasing risk of impacts on human and natural systems, in the absence of compensating changes in these systems’ exposure and vulnerability, and in the absence of effective adaptation. Our picture of the evolution of RKR-relevant climatic impact-drivers complements and enriches the treatment of RKRs in the other papers in at least two ways: by filling in their often only cursory or limited representation of the physical climate aspects driving impacts, and by providing a fuller representation of their future potential evolution, an important component – if never the only one – of the future evolution of risk severity.  more » « less
Award ID(s):
2103754
PAR ID:
10499595
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier B.V.
Date Published:
Journal Name:
Climate Risk Management
Volume:
40
Issue:
C
ISSN:
2212-0963
Page Range / eLocation ID:
100516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367–383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

     
    more » « less
  2. Risks from human intervention in the climate system are raising concerns with respect to individual species and ecosystem health and resiliency. A dominant approach uses global climate models to predict changes in climate in the coming decades and then to downscale this information to assess impacts to plant communities, animal habitats, agricultural and urban ecosystems, and other parts of the Earth’s life system. To achieve robust assessments of the threats to these systems in this top-down, outcome vulnerability approach, however, requires skillful prediction, and representation of changes in regional and local climate processes, which has not yet been satisfactorily achieved. Moreover, threats to biodiversity and ecosystem function, such as from invasive species, are in general, not adequately included in the assessments. We discuss a complementary assessment framework that builds on a bottom-up vulnerability concept that requires the determination of the major human and natural forcings on the environment including extreme events, and the interactions between these forcings. After these forcings and interactions are identified, then the relative risks of each issue can be compared with other risks or forcings in order to adopt optimal mitigation/adaptation strategies. This framework is a more inclusive way of assessing risks, including climate variability and longer-term natural and anthropogenic-driven change, than the outcome vulnerability approach which is mainly based on multi-decadal global and regional climate model predictions. We therefore conclude that the top-down approach alone is outmoded as it is inadequate for robustly assessing risks to biodiversity and ecosystem function. In contrast the bottom-up, integrative approach is feasible and much more in line with the needs of the assessment and conservation community. A key message of our paper is to emphasize the need to consider coupled feedbacks since the Earth is a dynamically interactive system. This should be done not just in the model structure, but also in its application and subsequent analyses. We recognize that the community is moving toward that goal and we urge an accelerated pace. 
    more » « less
  3. Abstract

    Anthropogenic aerosol emissions are expected to change rapidly over the coming decades, driving strong, spatially complex trends in temperature, hydroclimate, and extreme events both near and far from emission sources. Under-resourced, highly populated regions often bear the brunt of aerosols’ climate and air quality effects, amplifying risk through heightened exposure and vulnerability. However, many policy-facing evaluations of near-term climate risk, including those in the latest Intergovernmental Panel on Climate Change assessment report, underrepresent aerosols’ complex and regionally diverse climate effects, reducing them to a globally averaged offset to greenhouse gas warming. We argue that this constitutes a major missing element in society’s ability to prepare for future climate change. We outline a pathway towards progress and call for greater interaction between the aerosol research, impact modeling, scenario development, and risk assessment communities.

     
    more » « less
  4. Vulnerability of marine species to climate change (including ocean acidification, deoxygenation, and associated changes in food supply) depends on species’ ecological and biological characteristics. Most existing assessments focus on coastal species but systematic analysis of climate vulnerability for the deep sea is lacking. Here, we combine a fuzzy logic expert system with species biogeographical data to assess the risks of climate impacts to the population viability of 32 species of exploited demersal deep-sea species across the global ocean. Climatic hazards are projected to emerge from historical variabilities in all the recorded habitats of the studied species by the mid-twenty-first century. Species that are both at very high risk of climate impacts and highly vulnerable to fishing include Antarctic toothfish (Dissostichus mawsoni), rose fish (Sebastes norvegicus), roughhead grenadier (Macrourus berglax), Baird’s slickhead (Alepocephalus bairdii), cusk (Brosme brosme), and Portuguese dogfish (Centroscymnus coelepis). Most exploited deep-sea fishes are likely to be at higher risk of local, or even global, extinction than previously assessed because of their high vulnerability to both climate change and fishing. Spatially, a high concentration of deep-sea species that are climate vulnerable is predicted in the northern Atlantic Ocean and the Indo-Pacific region. Aligning carbon mitigation with improved fisheries management offers opportunities for overall risk reduction in the coming decades. Regional fisheries management organizations (RFMOs) have an obligation to incorporate climate change in their deliberations. In addition, deep-sea areas that are not currently managed by RFMOs should be included in existing or new international governance institutions or arrangements. 
    more » « less
  5. Making informed future decisions about solar radiation modification (SRM; also known as solar geoengineering)—approaches such as stratospheric aerosol injection (SAI) that would cool the climate by reflecting sunlight—requires projections of the climate response and associated human and ecosystem impacts. These projections, in turn, will rely on simulations with global climate models. As with climate-change projections, these simulations need to adequately span a range of possible futures, describing different choices, such as start date and temperature target, as well as risks, such as termination or interruptions. SRM modeling simulations to date typically consider only a single scenario, often with some unrealistic or arbitrarily chosen elements (such as starting deployment in 2020), and have often been chosen based on scientific rather than policy-relevant considerations (e.g., choosing quite substantial cooling specifically to achieve a bigger response). This limits the ability to compare risks both between SRM and non-SRM scenarios and between different SRM scenarios. To address this gap, we begin by outlining some general considerations on scenario design for SRM. We then describe a specific set of scenarios to capture a range of possible policy choices and uncertainties and present corresponding SAI simulations intended for broad community use. 
    more » « less