skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large anomalous Hall effect and negative magnetoresistance in half-topological semimetals
Proposed mechanisms for large intrinsic anomalous Hall effect (AHE) in magnetic topological semimetals include diverging Berry curvatures of Weyl nodes, anticrossing nodal rings or points of non-trivial bands. Here we demonstrate that a half-topological semimetal (HTS) state near a topological critical point can provide an alternative mechanism for a large AHE via systematic studies on an antiferromagnetic (AFM) half-Heusler compound TbPdBi. We not only observe a large AHE with tanΘH≈ 2 in its field-driven ferromagnetic (FM) phase, but also find a distinct Hall resistivity peak in its canted AFM phase. Moreover, we observe a large negative magnetoresistance with a value of ~98%. Our in-depth theoretical modelling indicates that these exotic transport properties originate from the HTS state which exhibits Berry curvature cancellation between the trivial spin-up and nontrivial spin-down bands. Our study offers alternative strategies for improved materials design for spintronics and other applications.  more » « less
Award ID(s):
2211327 2039351
PAR ID:
10499608
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
6
Issue:
1
ISSN:
2399-3650
Page Range / eLocation ID:
346
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In non-interacting systems, bands from non-trivial topology emerge strictly at half-filling and exhibit either the quantum anomalous Hall or spin Hall effects. Here we show using determinantal quantum Monte Carlo and an exactly solvable strongly interacting model that these topological states now shift to quarter filling. A topological Mott insulator is the underlying cause. The peak in the spin susceptibility is consistent with a possible ferromagnetic state atT = 0. The onset of such magnetism would convert the quantum spin Hall to a quantum anomalous Hall effect. While such a symmetry-broken phase typically is accompanied by a gap, we find that the interaction strength must exceed a critical value for this to occur. Hence, we predict that topology can obtain in a gapless phase but only in the presence of interactions in dispersive bands. These results explain the recent quarter-filled quantum anomalous Hall effects seen in moiré systems. 
    more » « less
  2. Abstract The anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co3Sn2-xInxS2, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function ofxand provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves fromc-axis ferromagnetism at$$x = 0$$ x = 0 to a canted antiferromagnetic (AFM) structure with reducedc-axis moment and in-plane AFM order at$$x = 0.12$$ x = 0.12 and further reducedc-axis FM moment at$$x = 0.3$$ x = 0.3 . Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport. 
    more » « less
  3. Abstract Covalent 2D magnets such as Cr2Te3, which feature self‐intercalated magnetic cations located between monolayers of transition‐metal dichalcogenide material, offer a unique platform for controlling magnetic order and spin texture, enabling new potential applications for spintronic devices. Here, it is demonstrated that the unconventional anomalous Hall effect (AHE) in Cr2Te3, characterized by additional humps and dips near the coercive field in AHE hysteresis, originates from an intrinsic mechanism dictated by the self‐intercalation. This mechanism is distinctly different from previously proposed mechanisms such as topological Hall effect, or two‐channel AHE arising from spatial inhomogeneities. Crucially, multiple Weyl‐like nodes emerge in the electronic band structure due to strong spin‐orbit coupling, whose positions relative to the Fermi level is sensitively modulated by the canting angles of the self‐intercalated Cr cations. These nodes contribute strongly to the Berry curvature and AHE conductivity. This component competes with the contribution from bands that are less affected by the self‐intercalation, resulting in a sign change in AHE with temperature and the emergence of additional humps and dips. The findings provide compelling evidence for the intrinsic origin of the unconventional AHE in Cr2Te3 and further establish self‐intercalation as a control knob for engineering AHE in complex magnets. 
    more » « less
  4. Molecular-beam epitaxy enables ultrathin functional materials to be combined in heterostructures to create emergent phenomena at the interface. Magnetic skyrmions are an example of an exciting phase found in such heterostructures. SrRuO3 and SrRuO3-based heterostructures have been at the center of the debate on whether a hump-like feature appearing in Hall resistivities is sufficient evidence to prove the presence of skyrmions in a material. To address the ambiguity, we synthesize a model heterostructure with engineered Berry curvature that combines, in parallel, a positive anomalous Hall effect (AHE) channel (a Sr0.6Ca0.4RuO3 layer) with a negative AHE channel (a SrRuO3 layer). We demonstrate that the two opposite AHE channels can be combined to artificially reproduce a “hump-like” feature, which closely resembles the hump-like feature typically attributed to the topological Hall effect and the presence of chiral spin textures, such as skyrmions. We compare our heterostructure with a parallel resistor model, where the inputs are the AHE data from individual Sr0.6Ca0.4RuO3 and SrRuO3 films. To check for the presence of skyrmions, we measure the current dependence, angle dependence, and minor loop dependence of Rhump in the heterostructure. Despite the clear hump, no evidence of skyrmions is found. 
    more » « less
  5. Abstract Three-dimensional (3D) compensated MnBi 2 Te 4 is antiferromagnetic, but undergoes a spin-flop transition at intermediate fields, resulting in a canted phase before saturation. In this work, we experimentally show that the anomalous Hall effect (AHE) in MnBi 2 Te 4 originates from a topological response that is sensitive to the perpendicular magnetic moment and to its canting angle. Synthesis by molecular beam epitaxy allows us to obtain a large-area quasi-3D 24-layer MnBi 2 Te 4 with near-perfect compensation that hosts the phase diagram observed in bulk which we utilize to probe the AHE. This AHE is seen to exhibit an antiferromagnetic response at low magnetic fields, and a clear evolution at intermediate fields through surface and bulk spin-flop transitions into saturation. Throughout this evolution, the AHE is super-linear versus magnetization rather than the expected linear relationship. We reveal that this discrepancy is related to the canting angle, consistent with the symmetry of the crystal. Our findings bring to light a topological anomalous Hall response that can be found in non-collinear ferromagnetic, and antiferromagnetic phases. 
    more » « less