skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leibniz International Proceedings in Informatics (LIPIcs):18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)
Representation of Euclidean objects in a digital space has been a focus of research for over 30 years. Digital line segments are particularly important as other digital objects depend on their definition (e.g., digital convex objects or digital star-shaped objects). It may be desirable for the digital line segment systems to satisfy some nice properties that their Euclidean counterparts also satisfy. The system is a consistent digital line segment system (CDS) if it satisfies five properties, most notably the subsegment property (the intersection of any two digital line segments should be connected) and the prolongation property (any digital line segment should be able to be extended into a digital line). It is known that any CDS must have Ω(log n) Hausdorff distance to their Euclidean counterparts, where n is the number of grid points on a segment. In fact this lower bound even applies to consistent digital rays (CDR) where for a fixed p ∈ ℤ², we consider the digital segments from p to q for each q ∈ ℤ². In this paper, we consider families of weak consistent digital rays (WCDR) where we maintain four of the CDR properties but exclude the prolongation property. In this paper, we give a WCDR construction that has optimal Hausdorff distance to the exact constant. That is, we give a construction whose Hausdorff distance is 1.5 under the L_∞ metric, and we show that for every ε > 0, it is not possible to have a WCDR with Hausdorff distance at most 1.5 - ε.  more » « less
Award ID(s):
1733874
PAR ID:
10499746
Author(s) / Creator(s):
;
Editor(s):
Czumaj, Artur; Xin, Qin
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Subject(s) / Keyword(s):
Digital Geometry Consistent Digital Rays Theory of computation → Computational geometry
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study and classify proper q -colourings of the ℤ d lattice, identifying three regimes where different combinatorial behaviour holds. (1) When $$q\le d+1$$ , there exist frozen colourings, that is, proper q -colourings of ℤ d which cannot be modified on any finite subset. (2) We prove a strong list-colouring property which implies that, when $$q\ge d+2$$ , any proper q -colouring of the boundary of a box of side length $$n \ge d+2$$ can be extended to a proper q -colouring of the entire box. (3) When $$q\geq 2d+1$$ , the latter holds for any $$n \ge 1$$ . Consequently, we classify the space of proper q -colourings of the ℤ d lattice by their mixing properties. 
    more » « less
  2. Bojanczyk, Mikolaj; Chekuri, Chandra (Ed.)
    Given a point set P in the plane, we seek a subset Q ⊆ P, whose convex hull gives a smaller and thus simpler representation of the convex hull of P. Specifically, let cost(Q,P) denote the Hausdorff distance between the convex hulls CH(Q) and CH(P). Then given a value ε > 0 we seek the smallest subset Q ⊆ P such that cost(Q,P) ≤ ε. We also consider the dual version, where given an integer k, we seek the subset Q ⊆ P which minimizes cost(Q,P), such that |Q| ≤ k. For these problems, when P is in convex position, we respectively give an O(n log²n) time algorithm and an O(n log³n) time algorithm, where the latter running time holds with high probability. When there is no restriction on P, we show the problem can be reduced to APSP in an unweighted directed graph, yielding an O(n^2.5302) time algorithm when minimizing k and an O(min{n^2.5302, kn^2.376}) time algorithm when minimizing ε, using prior results for APSP. Finally, we show our near linear algorithms for convex position give 2-approximations for the general case. 
    more » « less
  3. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    Let d be a (well-behaved) shortest-path metric defined on a path-connected subset of ℝ² and let 𝒟 = {D_1,…,D_n} be a set of geodesic disks with respect to the metric d. We prove that 𝒢^×(𝒟), the intersection graph of the disks in 𝒟, has a clique-based separator consisting of O(n^{3/4+ε}) cliques. This significantly extends the class of objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for q-Coloring that runs in time 2^O(n^{3/4+ε}), assuming the boundaries of the disks D_i can be computed in polynomial time. We also use our clique-based separator to obtain a simple, efficient, and almost exact distance oracle for intersection graphs of geodesic disks. Our distance oracle uses O(n^{7/4+ε}) storage and can report the hop distance between any two nodes in 𝒢^×(𝒟) in O(n^{3/4+ε}) time, up to an additive error of one. So far, distance oracles with an additive error of one that use subquadratic storage and sublinear query time were not known for such general graph classes. 
    more » « less
  4. Ahn, Hee-Kap; Sadakane, Kunihiko (Ed.)
    In the standard planar k-center clustering problem, one is given a set P of n points in the plane, and the goal is to select k center points, so as to minimize the maximum distance over points in P to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the k-center problem to allow the covered objects to be a set of general disjoint convex objects C rather than just a point set P. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if r_opt is the optimal radius for k centers, then in n^O(1/ε²) time we can produce a set of (1+ε)k centers with radius ≤ r_opt. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping k as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit disks we show the problem is hard to approximate within a factor of (√{13}-√3)(2-√3) ≈ 6.99. This hardness result complements our main result, where we show that when the objects are disks, of possibly differing radii, there is a (5+2√3)≈ 8.46 approximation algorithm. Additionally, for unit disks we give an O(n log k)+(k/ε)^O(k) time (1+ε)-approximation to the optimal radius, that is, an FPTAS for constant k whose running time depends only linearly on n. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in O(n log n) time. 
    more » « less
  5. null (Ed.)
    Abstract We show how to construct a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner over a set $${P}$$ P of n points in $${\mathbb {R}}^d$$ R d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $${\vartheta },\varepsilon \in (0,1)$$ ϑ , ε ∈ ( 0 , 1 ) , the computed spanner $${G}$$ G has $$\begin{aligned} {{\mathcal {O}}}\bigl (\varepsilon ^{-O(d)} {\vartheta }^{-6} n(\log \log n)^6 \log n \bigr ) \end{aligned}$$ O ( ε - O ( d ) ϑ - 6 n ( log log n ) 6 log n ) edges. Furthermore, for any k , and any deleted set $${{B}}\subseteq {P}$$ B ⊆ P of k points, the residual graph $${G}\setminus {{B}}$$ G \ B is a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner for all the points of $${P}$$ P except for $$(1+{\vartheta })k$$ ( 1 + ϑ ) k of them. No previous constructions, beyond the trivial clique with $${{\mathcal {O}}}(n^2)$$ O ( n 2 ) edges, were known with this resilience property (i.e., only a tiny additional fraction of vertices, $$\vartheta |B|$$ ϑ | B | , lose their distance preserving connectivity). Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black-box fashion. 
    more » « less