skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: $$ \mathcal{N} $$ = 2 JT supergravity and matrix models
A<sc>bstract</sc> Generalizing previous results for$$ \mathcal{N} $$ N = 0 and$$ \mathcal{N} $$ N = 1, we analyze$$ \mathcal{N} $$ N = 2 JT supergravity on asymptotically AdS2spaces with arbitrary topology and show that this theory of gravity is dual, in a holographic sense, to a certain random matrix ensemble in which supermultiplets of differentR-charge are statistically independent and each is described by its own$$ \mathcal{N} $$ N = 2 random matrix ensemble. We also analyze the case with a time-reversal symmetry, either commuting or anticommuting with theR-charge. In order to compare supergravity to random matrix theory, we develop an$$ \mathcal{N} $$ N = 2 analog of the recursion relations for Weil-Petersson volumes originally discovered by Mirzakhani in the bosonic case.  more » « less
Award ID(s):
2207584
PAR ID:
10499770
Author(s) / Creator(s):
;
Publisher / Repository:
https://inspirehep.net/
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We studyd= 4,$$ \mathcal{N} $$ N ≥ 5 supergravities and their deformation via candidate counterterms, with the purpose to absorb UV divergences. We generalize the earlier studies of deformation and twisted self-duality constraint to the case with unbroken local$$ \mathcal{H} $$ H -symmetry in presence of fermions. We find that the deformed action breaks nonlinear local supersymmetry. We show that all known cases of enhanced UV divergence cancellations are explained by nonlinear local supersymmetry. This result implies, in particular, that if$$ \mathcal{N} $$ N = 5 supergravity at five loop will turn out to be UV divergent, the deformed theory will be BRST inconsistent. If it will be finite, it will be a consequence of nonlinear local supersymmetry and E7-type duality. 
    more » « less
  2. A<sc>bstract</sc> In the standard$$ \mathcal{N} $$ N = (4, 4) AdS3/CFT2with symN(T4), as well as the$$ \mathcal{N} $$ N = (2, 2) Datta-Eberhardt-Gaberdiel variant with symN(T4/ℤ2), supersymmetric index techniques have not been applied so far to the CFT states with target-space momentum or winding. We clarify that the difficulty lies in a central extension of the SUSY algebra in the momentum and winding sectors, analogous to the central extension on the Coulomb branch of 4d$$ \mathcal{N} $$ N = 2 gauge theories. We define modified helicity-trace indices tailored to the momentum and winding sectors, and use them for microstate counting of the corresponding bulk black holes. In the$$ \mathcal{N} $$ N = (4, 4) case we reproduce the microstate matching of Larsen and Martinec. In the$$ \mathcal{N} $$ N = (2, 2) case we resolve a previous mismatch with the Bekenstein-Hawking formula encountered in the topologically trivial sector by going to certain winding sectors. 
    more » « less
  3. A<sc>bstract</sc> Euclidean path integrals for UV-completions ofd-dimensional bulk quantum gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality, continuity, reflection-positivity, and factorization. Sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ H B of the resulting Hilbert space were then defined for any (d− 2)-dimensional surface$$ \mathcal{B} $$ B , where$$ \mathcal{B} $$ B may be thought of as the boundary ∂Σ of a bulk Cauchy surface in a corresponding Lorentzian description, and where$$ \mathcal{B} $$ B includes the specification of appropriate boundary conditions for bulk fields. Cases where$$ \mathcal{B} $$ B was the disjoint unionB⊔Bof two identical (d− 2)-dimensional surfacesBwere studied in detail and, after the inclusion of finite-dimensional ‘hidden sectors,’ were shown to provide a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was performed by constructing type-I von Neumann algebras$$ {\mathcal{A}}_L^B $$ A L B ,$$ {\mathcal{A}}_R^B $$ A R B that act respectively at the left and right copy ofBinB⊔B. Below, we consider the case of general$$ \mathcal{B} $$ B , and in particular for$$ \mathcal{B} $$ B =BL⊔BRwithBL,BRdistinct. For anyBR, we find that the von Neumann algebra atBLacting on the off-diagonal Hilbert space sector$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ H B L B R is a central projection of the corresponding type-I von Neumann algebra on the ‘diagonal’ Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ H B L B L . As a result, the von Neumann algebras$$ {\mathcal{A}}_L^{B_L} $$ A L B L ,$$ {\mathcal{A}}_R^{B_L} $$ A R B L defined in [1] using the diagonal Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ H B L B L turn out to coincide precisely with the analogous algebras defined using the full Hilbert space of the theory (including all sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ H B ). A second implication is that, for any$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ H B L B R , including the same hidden sectors as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. We also show the above central projections to satisfy consistency conditions that lead to a universal central algebra relevant to all choices ofBLandBR
    more » « less
  4. A<sc>bstract</sc> The planar integrability of$$ \mathcal{N} $$ N = 4 super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the SU(2)$$ \mathcal{N} $$ N = 4 SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators withR-chargeJin the limitJ→ ∞ with$$ {\lambda}_J\equiv {g}_{\textrm{YM}}^2J/2 $$ λ J g YM 2 J / 2 fixed. The dynamics in thislarge charge ’t Hooft limitis constrained by a centrally-extended$$ \mathfrak{psu} $$ psu (2|2)2symmetry that played a crucial role for the planar integrability. To the leading order in 1/J, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general SU(N) gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of sizeJ/2 that reproduces our large charge result atN= 2. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin ’t Hooft limit, the combined largeN-largeJlimits, and applications to general$$ \mathcal{N} $$ N = 2 superconformal field theories. 
    more » « less
  5. A<sc>bstract</sc> Motivated by understanding the scattering of gravitons and their superpartners from extended (p,q)-strings in type IIB string theory via AdS/CFT, we study an integrated two-point function of stress tensor multiplet operators in the presence of a half-BPS line defect in$$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory. We determine this integrated correlator at the five lowest non-trivial orders in$$ 1/\sqrt{N} $$ 1 / N at fixed Yang-Mills coupling andθangle. Our calculations are performed explicitly when the line defect is a Wilson line, in which case we find a finite number of perturbative contributions at each order in$$ 1/\sqrt{N} $$ 1 / N , as well as instanton contributions. Using SL(2,ℤ) transformations, our results can also be applied to Wilson-’t Hooft line defects dual to extended (p,q)-strings in the bulk. We analyze features of these integrated correlators in the weak coupling expansion by comparing with open-closed amplitudes of type IIB string theory on AdS5× S5, as well as in its flat space limit. We predict new higher-derivative interaction vertices on the D1-brane and, more generally, on (p,q)-strings. 
    more » « less