With the developments in nanotechnology, nanofibrous materials attract great attention as possible platforms for fluidic engineering. This requires an understanding of droplet interactions with fibers when gravity plays no significant role. This work aims to classify all possible axisymmetric configurations of droplets on fibers. The contact angle that the drop makes with the fiber surface is allowed to change from 0° to 180°. Nodoidal apple-like droplets with inverted menisci cusped toward the droplet center and unduloidal droplets with menisci cusped away from the droplet center were introduced and fully analyzed. The existing theory describing axisymmetric droplets on fibers is significantly enriched introducing new morphological configurations of droplets. It is experimentally shown that the barreled droplets could be formed on non-wettable fibers offering contact angles greater than 90°. The theory was quantitatively confirmed with hemispherical droplets formed at the end of a capillary tube and satisfying all the boundary conditions of the model. It is expected that the developed theory could be used for the design of nanofiber-based fluidic devices and for drop-on-demand technologies.
more »
« less
On the Electro-Mechanical Stability of Elastomeric Coaxial Fibers
Abstract The stability of cylindrical coaxial fibers made from soft elastomeric materials is studied for electro-static loadings. The general configuration considered is a three-component axisymmetric fiber having a conducting core bonded to a dielectric annulus in turn bonded to an outer conducting annular sheath. A voltage difference between the conducting components is imposed. The stresses and actuated elongation in the perfectly concentric fiber are analyzed, and the critical voltage at which stability of the concentric configuration is lost is determined via solution of the non-axisymmetric bifurcation problem. The role of the geometry and moduli contrasts among the components is revealed, and the sub-class of two-component fibers is also analyzed. The idealized problem of a planar layer with conducting surfaces that is bonded to a stiff substrate on one surface and free on the other exposes the importance of short wavelength surface instability modes.
more »
« less
- Award ID(s):
- 2011754
- PAR ID:
- 10499802
- Publisher / Repository:
- ASME Journal of Applied Mechanics
- Date Published:
- Journal Name:
- Journal of Applied Mechanics
- Volume:
- 88
- Issue:
- 6
- ISSN:
- 0021-8936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Three crystalline SiC fibers were studied: Tyranno, Hi‐Nicalon, and Sylramic. Thermodynamic stability of the SiC fibers was determined by high temperature oxide melt solution calorimetry. Results shed light on the thermodynamic penalty or benefit associated with microstructural modification of the ceramic fibers, and how energetics correlate to mechanical properties. Enthalpies of formation from components (SiC, SiO2, Si3N4, and C, ∆H°f,comp) for Tyranno, Hi‐Nicalon, and Sylramic are −12.05 ± 8.71, −58.75 ± 6.93, and −71.10 ± 8.71 kJ/mol Si, respectively. The microstructure in Sylramic offers the greatest stabilizing effect, thus resulting in its much more exothermic enthalpy of formation relative to elements and crystalline components. In contrast, the microstructure in Tyranno offers the least stabilization. The thermodynamic stability of the fibers increases with increasing mixed bonding (Si bonded to both C and O). From mechanical testing, Young's moduli of Tyranno, Hi‐Nicalon, and Sylramic are 112, 205, and 215 GPa, respectively. Greater thermodynamic stability is correlated with a higher Young's modulus.more » « less
-
The research investigates the thermal behavior of mixed systems based on natural and artificial cellulose fibers used as precursors for carbon nonwoven materials. Flax and hemp fibers were employed as natural components; they were first chemically treated to remove impurities and enriched with alpha-cellulose. The structure, chemical composition, and mechanical properties of both natural and viscose fibers were studied. It was shown that fiber properties depend on the fiber production process history; natural fibers are characterized by a high content of impurities and exhibit high strength characteristics, whereas viscose fibers have greater deformation properties. The thermal behavior of blended compositions was investigated using TGA and DSC methods across a wide range of component ratios. Carbon yield values at 1000 °C were found to be lower for blended systems containing 10–40% by weight of bast fibers, with carbon yield increasing as the quantity of natural fibers increased. Thus, the composition of the cellulose composite affects carbon yield and thermal processes in the system. Using the Kissinger method, data were obtained on the value of the activation energy of thermal decomposition for various cellulose and composite systems. It was found that natural fiber systems have three-times higher activation energy than viscose fiber systems, indicating their greater thermal stability. Blends of natural and artificial fibers combine the benefits of both precursors, enabling the deliberate regulation of thermal behavior and carbon material yield. This approach opens up prospects for the creation of functional carbon materials used in various high-tech areas, including thermal insulation.more » « less
-
Crystalline fibers of the hydrogen-bonded framework bis(guanidinium) naphthalene-1,5-disulfonate, (G)2(1,5-NDS), with ethanol guest molecules twist as they grow when deposited from solution under conditions that favor low nucleation densities and high branching rates. Spherulites comprising helicoidal fibers with a pitch of 3.4 ± 0.5 μm display rhythmic concentric variations in interference colors between crossed polarizers. Tightly packed fibers and platelets, systematically change orientations between flat-on and edge-on crystallites with respect to the substrate surface. Mueller matrix imaging reveals periodic oscillations in the absolute magnitude of the linear retardance and an associated bisignate circular retardance. Single-crystal X-ray diffraction data demonstrates that the twisted (G)2(1,5-NDS)⊃EtOH crystals adopt a bilayer packing motif with ethanol as guest molecules (space group P1 ̅). When the banded spherulite films were subsequently heated at 130°C, the solvated phase was converted to a guest-free crystalline phase (space group P21/c). This transition resulted in loss of linear retardance.more » « less
-
Abstract Smart textiles are currently being pursued for actuation and sensing for their potential to directly incorporate “intelligence” into the fabric, in contrast to wearable technologies. In smart textiles, smart materials (e.g., piezoelectric) are formed into yarns that are woven into fabrics for clothing. One immediate requirement for such textiles is their stability during washing cycles, as expected of any clothing items, which has been largely lacking so far. Here, we investigate the washing stability of nanofibrous piezoelectric textiles. Our results reveal that electrospun textiles exhibit remarkable structural stability from the fiber microstructure to the textile level. Overall fiber crystalline composition and electroactive phase remain stable within 1% of ~47% and ~85%, respectively. Mechanically, the textile displays sustained performance, with only negligible changes observed. The yield strain and stress only show a ~8% and 9% differences, respectively. Moreover, piezoelectric stability is confirmed through phase preservation and slight variation in voltage output of ~6%. These results prove the candidacy that the processing of electrospun polyvinylidene fluoride (PVDF) fibers to woven textiles is applicable to the demands of smart textiles, which is expected to accelerate the commercialization of such textiles for wearable robotics and health monitoring.more » « less
An official website of the United States government

