skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: China Southern Power Grid’s decarbonization likely to impact cropland and transboundary rivers
Abstract Decarbonizing the electricity sector requires massive investments in generation and transmission infrastructures that may impact both water and land resources. Characterizing these effects is key to ensure a sustainable energy transition. Here, we identify and quantify the unintended consequences of decarbonizing the China Southern Power Grid, China’s second-largest grid. We show that reaching carbon neutrality by 2060 is feasible; yet, doing so requires converting 40,000 square kilometers of land to support solar and wind as well as tapping on rivers to build ~32 gigawatts of hydropower. The impact of wind and solar development would span across multiple sectors, since crop and grassland constitute 90% of the identified sites. The construction of new dams may carry major externalities and trickle down to nearby countries, as most dams are located in transboundary rivers. Curbing the international footprint of this decarbonization effort would require additional investments (~12 billion United States dollars) in carbon capture technologies.  more » « less
Award ID(s):
1855982
PAR ID:
10499817
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
5
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The energy demands from data centers contribute greatly to water scarcity footprint and carbon emissions. Understanding the use of on-site renewable power generation is an important step to gain insight into making data centers more sustainable. This novel study examines the impact of on-site solar or wind energy on data center water scarcity usage effectiveness (WSUE) and carbon usage effectiveness (CUE) at a U.S. county scale for a given data center size, water consumption level, and energy efficiency. The analysis uncovers combinations of specific metrics associated with grid-based carbon emissions and water scarcity footprint that enable predictions of the improvements anticipated when implementing on-site solar or wind energy. The implementation of on-site renewables has the most benefit in reducing carbon footprint in areas with high existing grid-based emissions such as the western side of the Appalachian Mountains (e.g., central and eastern Kentucky). The largest benefit in reducing water scarcity footprint is generally seen in counties with low water scarcity compared to adjacent areas (e.g., northern California). 
    more » « less
  2. Ardakanian, Omid; Niesse, Astrid (Ed.)
    The rapid growth of datacenter (DC) loads can be leveraged to help meet renewable portfolio standard (RPS, renewable fraction)targets in power grids. The ability to manipulate DC loads over time(shifting) provides a mechanism to deal with temporal mismatch between non-dispatchable renewable generation (e.g. wind and solar) and overall grid loads, and this flexibility ultimately facilitates the absorption of renewables and grid decarbonization. To this end, we study DC-grid coupling models, exploring their impact on grid dispatch, renewable absorption, power prices, and carbon emissions.With a detailed model of grid dispatch, generation, topology, and loads, we consider three coupling approaches: fixed, datacenter-local optimization (online dynamic programming), and grid-wide optimization (optimal power flow). Results show that understanding the effects of dynamic DC load management requires studies that model the dynamics of both load and power grid. Dynamic DC-grid coupling can produce large improvements: (1) reduce grid dispatch cost (-3%), (2) increase grid renewable fraction (+1.58%), and (3) reduce DC power cost (-16.9%).It also has negative effects: (1) increase cost for both DCs and non-DC customers, (2) differentially increase prices for non-DC customers, and (3) create large power-level changes that may harm DC productivity. 
    more » « less
  3. Beavers build dams that change the way water moves between streams, lakes, and the land. In Alaska, beavers are moving north from the forests into the Arctic tundra. When beavers build dams in the Arctic, they cause frozen soil, called permafrost, to thaw. Scientists are studying how beavers and the thawing of permafrost are impacting streams and rivers in Alaska’s national parks. For example, permafrost thaw from beavers can add harmful substances like mercury to streams. Mercury can be taken up by stream food webs, including fish, which then become unhealthy to eat. Permafrost thaw can also move carbon (from dead plants) to beaver ponds. When this carbon decomposes, it can be released from beaver ponds into the air as greenhouse gases, which cause Earth’s climate to warm. Scientists are trying to keep up with these busy beavers to better understand how they are changing Arctic landscapes and Earth’s climate. 
    more » « less
  4. Abstract A portion of the charcoal and soot produced during combustion processes on land (e.g., wildfire, burning of fossil fuels) enters aquatic systems as dissolved black carbon (DBC). In terms of mass flux, rivers are the main identified source of DBC to the oceans. Since DBC is believed to be representative of the refractory carbon pool, constraining sources of marine DBC is key to understanding the long-term persistence of carbon in our global oceans. Here, we use compound-specific stable carbon isotopes (δ13C) to reveal that DBC in the oceans is ~6‰ enriched in13C compared to DBC exported by major rivers. This isotopic discrepancy indicates most riverine DBC is sequestered and/or rapidly degraded before it reaches the open ocean. Thus, we suggest that oceanic DBC does not predominantly originate from rivers and instead may be derived from another source with an isotopic signature similar to that of marine phytoplankton. 
    more » « less
  5. Abstract Solar energy has the potential to offset a significant fraction of non-renewable electricity demands globally, yet it may occupy extensive areas when deployed at this level. There is growing concern that large renewable energy installations will displace other land uses. Where should future solar power installations be placed to achieve the highest energy production and best use the limited land resource? The premise of this work is that the solar panel efficiency is a function of the location’s microclimate within which it is immersed. Current studies largely ignore many of the environmental factors that influence Photovoltaic (PV) panel function. A model for solar panel efficiency that incorporates the influence of the panel’s microclimate was derived from first principles and validated with field observations. Results confirm that the PV panel efficiency is influenced by the insolation, air temperature, wind speed and relative humidity. The model was applied globally using bias-corrected reanalysis datasets to map solar panel efficiency and the potential for solar power production given local conditions. Solar power production potential was classified based on local land cover classification, with croplands having the greatest median solar potential of approximately 28 W/m2. The potential for dual-use, agrivoltaic systems may alleviate land competition or other spatial constraints for solar power development, creating a significant opportunity for future energy sustainability. Global energy demand would be offset by solar production if even less than 1% of cropland were converted to an agrivoltaic system. 
    more » « less