skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immunoaffinity Chromatography for Protein Purification and Analysis
Immunoaffinity chromatography (IAC) is a type of liquid chromatography that uses immobilized antibodies or related binding agents as selective stationary phases for sample separation or analysis. The strong binding and high selectivity of antibodies have made IAC a popular tool for the purification and analysis of many chemicals and biochemicals, including proteins. The basic principles of IAC are described as related to the use of this method for protein purification and analysis. The main factors to consider in this technique are also presented under a discussion of the general strategy to follow during the development of a new IAC method. Protocols, as illustrated using human serum albumin (HSA) as a model protein, are provided for the use of IAC in several formats. This includes both the use of IAC with traditional low‐performance supports such as agarose for off‐line immunoextraction and supports used in high‐performance IAC for on‐line immunoextraction. The use of IAC for protein analysis as a flow‐based or chromatographic immunoassay is also discussed and described using HSA and a competitive binding assay format as an example.  more » « less
Award ID(s):
2108881
PAR ID:
10499909
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Current Protocols
Volume:
3
Issue:
8
ISSN:
2691-1299
Page Range / eLocation ID:
e867
Subject(s) / Keyword(s):
immunoaffinity chromatography immunoextraction protein purification antibodies chromatographic immunoassay
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grinberg, Nelu; Carr, Peter W. (Ed.)
    Affinity chromatography is a technique that uses a stationary phase based on the supramolecular interactions that occur in biological systems or mimics of these systems. This method has long been a popular tool for the isolation, measurement, and characterization of specific targets in complex samples. This review discusses the basic concepts of this method and examines recent developments in affinity chromatography and related supramolecular separation methods. Topics that are examined include advances that have occurred in the types of supports, approaches to immobilization, and binding agents that are employed in this method. New developments in the applications of affinity chromatography are also summarized, including an overview on the use of this method for biochemical purification, sample preparation or analysis, chiral separations, and biointeraction studies. 
    more » « less
  2. Protein A (ProA) chromatography is a mainstay in the analytical and preparative scale isolation/purification of monoclonal antibodies (mAbs). One area of interest is continuous processing or continuous chromatography, where ProA chromatography is used in the large-scale purification of mAbs. However, filtration is required prior to all ProA isolations to remove large particulates in cell culture supernatant, consisting of a mixture of cell debris, host cell contaminants, media components, etc. Currently, in-line filters are used to remove particles in the supernatant, requiring replacement over time due to fouling; regardless of the scale. Here we demonstrate the ProA isolation of unfiltered Chinese hamster ovary (CHO) cell media using capillary-channel polymer (C-CP) fiber stationary phases modified with S. aureus Protein A (rSPA). The base polymer of the analytical scale C-CP columns costs ~$5 per 30 cm column, and when modified with ProA, the base cost is ~$25 per 30 cm column, a cost-effective option in comparison to analytical-scale commercial columns. To directly sample unfiltered media, a 5 cm gap was created at the head of the C-CP column, where the large particulates are trapped, while molecular solutes flow through the capillary channels without sacrifice in analytical performance, mAb loading capacity, or backpressure increases. The binding capacity of the gap ProA C-CP column was ~ 2 mg mL− 1 of IgG per bed volume. The same analytical column could be operated after processing a total of ~ 56 column bed volumes of supernatant (>25 analytical cycles) without the need for caustic clean-in-place processing. 
    more » « less
  3. Chinese hamster ovary (CHO) cells are the primary mammalian cell lines utilized to produce monoclonal antibodies (mAbs). The upsurge in biosimilar development and the proven health benefits of mAb treatments reinforces the need for innovative methods to generate robust CHO clones and enhance production, while maintaining desired product quality attributes. Among various product titer-enhancing approaches, the use of histone deacetylase inhibitors (HDACis) such as sodium butyrate (NaBu) has yielded promising results. The titer-enhancing effect of HDACi treatment has generally been observed in lower producer cell lines but those studies are typically done on individual clones. Here, we describe a cell line development (CLD) platform approach for creating clones with varying productivities. We then describe a method for selecting an optimal NaBu concentration to evaluate potential titer-enhancing capabilities in a fed-batch study. Finally, a method for purifying the mAb using protein A chromatography, followed by glycosylation analysis using mass spectrometry, is described. The proposed workflow can be applied for a robust CLD process optimization to generate robust clones, enhance product expression, and improve product quality attributes. 
    more » « less
  4. null (Ed.)
    While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody–peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 μM), recovery and purity (64–71% and 86–91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes. 
    more » « less
  5. Abstract Histone post‐translational modifications (PTMs) play important roles in many biological processes, including gene regulation and chromatin dynamics, and are thus of high interest across many fields of biological research. Chromatin immunoprecipitation coupled with sequencing (ChIP‐seq) is a powerful tool to profile histone PTMsin vivo. This method, however, is largely dependent on the specificity and availability of suitable commercial antibodies. While mass spectrometry (MS)–based proteomic approaches to quantitatively measure histone PTMs have been developed in mammals and several other model organisms, such methods are currently not readily available in plants. One major challenge for the implementation of such methods in plants has been the difficulty in isolating sufficient amounts of pure, high‐quality histones, a step rendered difficult by the presence of the cell wall. Here, we developed a high‐yielding histone extraction and purification method optimized forArabidopsis thalianathat can be used to obtain high‐quality histones for MS. In contrast to other methods used in plants, this approach is relatively simple, and does not require membranes or additional specialized steps, such as gel excision or chromatography, to extract highly purified histones. We also describe methods for producing MS‐ready histone peptides through chemical labeling and digestion. Finally, we describe an optimized method to quantify and analyze the resulting histone PTM data using a modified version of EpiProfile 2.0 for Arabidopsis. In all, the workflow described here can be used to measure changes to histone PTMs resulting from various treatments, stresses, and time courses, as well as in different mutant lines. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Nuclear isolation and histone acid extraction Basic Protocol 2: Peptide labeling, digestion, and desalting Basic Protocol 3: Histone HPLC‐MS/MS and data analysis 
    more » « less