skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Present-biased lobbyists in linear–quadratic stochastic differential games
We investigate a linear–quadratic stochastic zero-sum game where two players lobby a political representative to invest in a wind farm. Players are time-inconsistent because they discount the utility with a non-constant rate. Our objective is to identify a consistent planning equilibrium in which the players are aware of their inconsistency and cannot commit to a lobbying policy. We analyse equilibrium behaviour in both single-player and two-player cases and compare the behaviours of the game under constant and variable discount rates. The equilibrium behaviour is provided in closed-loop form, either analytically or via numerical approximation. Our numerical analysis of the equilibrium reveals that strategic behaviour leads to more intense lobbying without resulting in overshooting.  more » « less
Award ID(s):
2305475
PAR ID:
10499993
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Finance and Stochastics
Volume:
27
Issue:
4
ISSN:
0949-2984
Page Range / eLocation ID:
947 to 984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Francisco Ruiz, Jennifer Dy (Ed.)
    We study the sample complexity of identifying an approximate equilibrium for two-player zero-sum n × 2 matrix games. That is, in a sequence of repeated game plays, how many rounds must the two players play before reaching an approximate equilibrium (e.g., Nash)? We derive instance-dependent bounds that define an ordering over game matrices that captures the intuition that the dynamics of some games converge faster than others. Specifically, we consider a stochastic observation model such that when the two players choose actions i and j, respectively, they both observe each other’s played actions and a stochastic observation Xij such that E [Xij ] = Aij . To our knowledge, our work is the first case of instance-dependent lower bounds on the number of rounds the players must play before reaching an approximate equilibrium in the sense that the number of rounds depends on the specific properties of the game matrix A as well as the desired accuracy. We also prove a converse statement: there exist player strategies that achieve this lower bound. 
    more » « less
  2. null (Ed.)
    We study the following problem, which to our knowledge has been addressed only partially in the literature and not in full generality. An agent observes two players play a zero-sum game that is known to the players but not the agent. The agent observes the actions and state transitions of their game play, but not rewards. The players may play either op-timally (according to some Nash equilibrium) or according to any other solution concept, such as a quantal response equilibrium. Following these observations, the agent must recommend a policy for one player, say Player 1. The goal is to recommend a policy that is minimally exploitable un-der the true, but unknown, game. We take a Bayesian ap-proach. We establish a likelihood function based on obser-vations and the specified solution concept. We then propose an approach based on Markov chain Monte Carlo (MCMC), which allows us to approximately sample games from the agent’s posterior belief distribution. Once we have a batch of independent samples from the posterior, we use linear pro-gramming and backward induction to compute a policy for Player 1 that minimizes the sum of exploitabilities over these games. This approximates the policy that minimizes the ex-pected exploitability under the full distribution. Our approach is also capable of handling counterfactuals, where known modifications are applied to the unknown game. We show that our Bayesian MCMC-based technique outperforms two other techniques—one based on the equilibrium policy of the maximum-probability game and the other based on imitation of observed behavior—on all the tested stochastic game envi-ronments. 
    more » « less
  3. An atomic routing game is a multiplayer game on a directed graph. Each player in the game chooses a path—a sequence of links that connect its origin node to its destination node—with the lowest cost, where the cost of each link is a function of all players’ choices. We develop a novel numerical method to design the link cost function in atomic routing games such that the players’ choices at the Nash equilibrium minimize a given smooth performance function. This method first approximates the nonsmooth Nash equilibrium conditions with smooth ones, then iteratively improves the link cost function via implicit differentiation. We demonstrate the application of this method to atomic routing games that model noncooperative agents navigating in grid worlds. 
    more » « less
  4. null (Ed.)
    A two-player finite game is represented by two payoff matrices (A, B), one for each player. Imitation games are a subclass of two-player games in which B is the identity matrix, implying that the second player gets a positive payoff only if she "imitates" the first. Given that the problem of computing a Nash equilibrium (NE) is known to be provably hard, even to approximate, we ask if it is any easier for imitation games. We show that much like the general case, for any c > 0, computing a 1 over n^c -approximate NE of imitation games remains PPAD-hard, where n is the number of moves available to the players. On the other hand, we design a polynomial-time algorithm to find ε-approximate NE for any given constant ε > 0 (PTAS). The former result also rules out the smooth complexity being in P, unless PPAD ⊂ RP. 
    more » « less
  5. In this paper, we develop distributed computation algorithms for Nash equilibriums of linear quadratic network games with proven differential privacy guarantees. In a network game with each player's payoff being a quadratic function, the dependencies of the decisions in the payoff function naturally encode a network structure governing the players' inter-personal influences. Such social influence structure and the individual marginal payoffs of the players indicate economic spillovers and individual preferences, and thus they are subject to privacy concerns. For distributed computing of the Nash equilibrium, the players are interconnected by a public communication graph, over which dynamical states are shared among neighboring nodes. When the players' marginal payoffs are considered to be private knowledge, we propose a distributed randomized gradient descent algorithm, in which each player adds a Laplacian random noise to her marginal payoff in the recursive updates. It is proven that the algorithm can guarantee differential privacy and convergence in expectation to the Nash equilibrium of the network game at each player's state. Moreover, the mean-square error between the players' states and the Nash equilibrium is shown to be bounded by a constant related to the differential privacy level. Next, when both the players' marginal payoffs and the influence graph are private information, we propose two distributed algorithms by randomized communication and randomized projection, respectively, for privacy preservation. The differential privacy and convergence guarantees are also established for such algorithms. 
    more » « less