skip to main content


Title: Optimal transport and control of active drops

Understanding the complex patterns in space–time exhibited by active systems has been the subject of much interest in recent times. Complementing this forward problem is the inverse problem of controlling active matter. Here, we use optimal control theory to pose the problem of transporting a slender drop of an active fluid and determine the dynamical profile of the active stresses to move it with minimal viscous dissipation. By parametrizing the position and size of the drop using a low-order description based on lubrication theory, we uncover a natural “gather–move–spread” strategy that leads to an optimal bound on the maximum achievable displacement of the drop relative to its size. In the continuum setting, the competition between passive surface tension and active controls generates richer behavior with futile oscillations and complex drop morphologies that trade internal dissipation against the transport cost to select optimal strategies. Our work combines active hydrodynamics and optimal control in a tractable and interpretable framework and begins to pave the way for the spatiotemporal manipulation of active matter.

 
more » « less
Award ID(s):
2011754
PAR ID:
10500035
Author(s) / Creator(s):
; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
35
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Active particles, such as swimming bacteria or self-propelled colloids, spontaneously assemble into large-scale dynamic structures. Geometric boundaries often enforce different spatio-temporal patterns compared to unconfined environment and thus provide a platform to control the behavior of active matter. Here, we report collective dynamics of active particles enclosed by soft, deformable boundary, that is responsive to the particles’ activity. We reveal that a quasi two-dimensional fluid droplet enclosing motile colloids powered by the Quincke effect (Quincke rollers) exhibits strong shape fluctuations with a power spectrum consistent with active fluctuations driven by particle-interface collisions. A broken detailed balance confirms the nonequilibrium nature of the shape dynamics. We further find that rollers self-organize into a single drop-spanning vortex, which can undergo a spontaneous symmetry breaking and vortex splitting. The droplet acquires motility while the vortex doublet exists. Our findings provide insights into the complex collective behavior of active colloidal suspensions in soft confinement.

     
    more » « less
  2. Tuncer, N ; Martcheva, M ; Prosper, O ; Childs, L (Ed.)
    In this chapter, we demonstrate how to use a nonlinear polyhedral con- strained optimization solver called the Polyhedral Active Set Algorithm (PASA) for solving a general singular control problem. We present a method for discretizing a general optimal control problem involving the use of the gradient of the Lagrangian for computing the gradient of the cost functional so that PASA can be applied. When a numerical solu- tion contains artifacts that resemble “chattering,” a phenomenon where the control oscillates wildly along the singular region, we recommend a method of regularizing the singular control problem by adding a term to the cost functional that measures a scalar multiple of the total variation of the control, where the scalar is viewed as a tuning parameter. We then demonstrate PASA’s performance on three singular control problems that give rise to different applications of mathematical biology. We also provide some exposition on the heuristics that we use in determining an appropriate size for the tuning parameter. 
    more » « less
  3. The rise of online marketplaces has raised customer expectations regarding customization and lead time. It poses significant challenges to manufacturing firms and prompts a move from make-to-stock to a more flexible make-to-order system. Compared to make-to-stock settings, make-to-order systems cannot smooth fluctuations in demand using available stock. While viewing dynamic pricing as a useful strategy to balance supply with demand, many manufacturing firms can also create capacity flexibility. In that scenario, system costs could be cut by managing capacity and demand simultaneously. In this paper, we consider a make-to-order production environment with base and surge capacity as well as the ability to adjust product pricing. Our main focus is on operational decision-making, assuming that the base capacity and surge capacity are fixed, but activating the surge capacity incurs a setup cost. Initially, we propose a stochastic control model to reflect this complex decision problem. However, our initial model leads to an intractable dynamic programming problem. To overcome this, we convert the problem to a more tractable diffusion control problem. This approach helps to reveal the conditions under which utilizing flexible capacity is more advantageous than relying solely on fixed capacity. When flexible capacity is advantageous, we provide a solution to the diffusion control problem that can guide optimal capacity and price adjustments. We discover an interesting interplay between capacity adjustment and dynamic pricing. In particular, we find that the price, which aims at reducing congestion, may not monotonically increase with the congestion level when capacity adjustments incur a fixed cost.

     
    more » « less
  4. Abstract

    Active fluids operate by constantly dissipating energy at the particle level to perform a directed motion, yielding dynamics and phases without any equilibrium equivalent. The emerging behaviors have been studied extensively, yet deciphering how local energy fluxes control the collective phenomena is still largely an open challenge. We provide generic relations between the activity-induced dissipation and the transport properties of an internal tracer. By exploiting a mapping between active fluctuations and disordered driving, our results reveal how the local dissipation, at the basis of self-propulsion, constrains internal transport by reducing the mobility and the diffusion of particles. Then, we employ techniques of large deviations to investigate how interactions are affected when varying dissipation. This leads us to shed light on a microscopic mechanism to promote clustering at low dissipation, and we also show the existence of collective motion at high dissipation. Overall, these results illustrate how tuning dissipation provides an alternative route to phase transitions in active fluids.

     
    more » « less
  5. Animals search for food in their environment with a decision strategy which keeps them fit. Optimal Foraging Theory models this foraging behavior to determine the optimal decision strategy followed by animals. This theory has been successfully applied for humans as they search for information and is termed as Information Foraging. When people visit a tourist location, they follow a similar strategy to move from one spot to another and collect information by capturing photographs. This behavior has similarities with the foraging behavior of animals which has been widely studied by researchers. In this work, we propose to employ Optimal Foraging Theory to help tourists explore a location and capture photographs in an optimal way. We determine a decision strategy for tourist which provides a list of interesting spots to visit in a tourist location along with corresponding stay time. Finally, we solve an optimization problem to find a path through these spots which can be followed by tourists. Experimental results on a public dataset demonstrate the effectiveness of the proposed method. 
    more » « less