Abstract BackgroundThe biofouling marine tube worm,Hydroides elegans, is an indirect developing polychaete with significance as a model organism for questions in developmental biology and the evolution of host‐microbe interactions. However, a complete description of the life cycle from fertilization through sexual maturity remains scattered in the literature, and lacks standardization. Results and discussionHere, we present a unified staging scheme synthesizing the major morphological changes that occur during the entire life cycle of the animal. These data represent a complete record of the life cycle, and serve as a foundation for connecting molecular changes with morphology. ConclusionsThe present synthesis and associated staging scheme are especially timely as this system gains traction within research communities. Characterizing theHydroideslife cycle is essential for investigating the molecular mechanisms that drive major developmental transitions, like metamorphosis, in response to bacteria. 
                        more » 
                        « less   
                    
                            
                            brainlife.io: a decentralized and open-source cloud platform to support neuroscience research
                        
                    
    
            Abstract Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10500051
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Methods
- Volume:
- 21
- Issue:
- 5
- ISSN:
- 1548-7091
- Format(s):
- Medium: X Size: p. 809-813
- Size(s):
- p. 809-813
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Vector-borne diseases pose a persistent and increasing challenge to human, animal, and agricultural systems globally. Mathematical modeling frameworks incorporating vector trait responses are powerful tools to assess risk and predict vector-borne disease impacts. Developing these frameworks and the reliability of their predictions hinge on the availability of experimentally derived vector trait data for model parameterization and inference of the biological mechanisms underpinning transmission. Trait experiments have generated data for many known and potential vector species, but the terminology used across studies is inconsistent, and accompanying publications may share data with insufficient detail for reuse or synthesis. The lack of data standardization can lead to information loss and prohibits analytical comprehensiveness. Here, we present MIReVTD, a Minimum Information standard for Reporting Vector Trait Data. Our reporting checklist balances completeness and labor- intensiveness with the goal of making these important experimental data easier to find and reuse, without onerous effort for scientists generating the data. To illustrate the standard, we provide an example reproducing results from anAedes aegyptimosquito study.more » « less
- 
            Abstract We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.more » « less
- 
            Abstract Open and practical exchange, dissemination, and reuse of specimens and data have become a fundamental requirement for life sciences research. The quality of the data obtained and thus the findings and knowledge derived is thus significantly influenced by the quality of the samples, the experimental methods, and the data analysis. Therefore, a comprehensive and precise documentation of the pre‐analytical conditions, the analytical procedures, and the data processing are essential to be able to assess the validity of the research results. With the increasing importance of the exchange, reuse, and sharing of data and samples, procedures are required that enable cross‐organizational documentation, traceability, and non‐repudiation. At present, this information on the provenance of samples and data is mostly either sparse, incomplete, or incoherent. Since there is no uniform framework, this information is usually only provided within the organization and not interoperably. At the same time, the collection and sharing of biological and environmental specimens increasingly require definition and documentation of benefit sharing and compliance to regulatory requirements rather than consideration of pure scientific needs. In this publication, we present an ongoing standardization effort to provide trustworthy machine‐actionable documentation of the data lineage and specimens. We would like to invite experts from the biotechnology and biomedical fields to further contribute to the standard.more » « less
- 
            Abstract. Rock fractures are a key contributor to a broad array of Earth surface processes due to their direct control on rock strength as well as rock porosity and permeability. However, to date, there has been no standardization for the quantification of rock fractures in surface process research. In this work, the case is made for standardization within fracture-focused research, and prior work is reviewed to identify various key datasets and methodologies. Then, a suite of standardized methods is presented as a starting “baseline” for fracture-based research in surface process studies. These methods have been shown in pre-existing work from structural geology, geotechnical engineering, and surface process disciplines to comprise best practices for the characterization of fractures in clasts and outcrops. This practical, accessible, and detailed guide can be readily employed across all fracture-focused weathering and geomorphology applications. The wide adoption of a baseline of data collected using the same methods will enable comparison and compilation of datasets among studies globally and will ultimately lead to a better understanding of the links and feedbacks between rock fracture and landscape evolution.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
