Major theories regarding microbe‐mediated plant community dynamics assume that plant species cultivate distinct microbial communities. However, few studies empirically assess the role of species‐associated microbial community dissimilarity in plant competitive dynamics. In this study, we paired a competition experiment between eight annual forbs with characterisation of species‐associated fungal communities to assess whether mycobiome dissimilarity is associated with pairwise competitive dynamics.
more »
« less
The three‐species problem: Incorporating competitive asymmetry and intransitivity in modern coexistence theory
Abstract While natural communities can contain hundreds of species, modern coexistence theory focuses primarily on species pairs. Alternatively, the structural stability approach considers the feasibility of equilibria, gaining scalability to larger communities but sacrificing information about dynamic stability. Three‐species competitive communities are a bridge to more‐diverse communities. They display novel phenomena while remaining amenable to mathematical analysis, but remain incompletely understood. Here, we combine these approaches to identify the key quantities that determine three‐species competition outcomes. We show that pairwise niche overlap and fitness differences are insufficient to completely characterize competitive outcomes, which requires a strictly triplet‐wise quantity: cyclic asymmetry, which underlies intransitivity. Low pairwise niche overlap stabilizes the triplet, while high fitness differences promote competitive exclusion. The effect of cyclic asymmetry on stability is complex and depends on pairwise niche overlap. In summary, we elucidate how pairwise niche overlap, fitness differences and cyclic asymmetry determine three‐species competition outcomes.
more »
« less
- Award ID(s):
- 1754250
- PAR ID:
- 10500095
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 27
- Issue:
- 4
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern coexistence theory is increasingly used to explain how differences between competing species lead to coexistence versus competitive exclusion. Although research testing this theory has focused on deterministic cases of competitive exclusion, in which the same species always wins, mounting evidence suggests that competitive exclusion is often historically contingent, such that whichever species happens to arrive first excludes the other. Coexistence theory predicts that historically contingent exclusion, known as priority effects, will occur when large destabilizing differences (positive frequency-dependent growth rates of competitors), combined with small fitness differences (differences in competitors’ intrinsic growth rates and sensitivity to competition), create conditions under which neither species can invade an established population of its competitor. Here we extend the empirical application of modern coexistence theory to determine the conditions that promote priority effects. We conducted pairwise invasion tests with four strains of nectar-colonizing yeasts to determine how the destabilizing and fitness differences that drive priority effects are altered by two abiotic factors characterizing the nectar environment: sugar concentration and pH. We found that higher sugar concentrations increased the likelihood of priority effects by reducing fitness differences between competing species. In contrast, higher pH did not change the likelihood of priority effects, but instead made competition more neutral by bringing both fitness differences and destabilizing differences closer to zero. This study demonstrates how the empirical partitioning of priority effects into fitness and destabilizing components can elucidate the pathways through which environmental conditions shape competitive interactions.more » « less
-
Abstract Mounting evidence suggests that plant–soil feedbacks (PSF) may determine plant community structure. However, we still have a poor understanding of how predictions from short‐term PSF experiments compare with outcomes of long‐term field experiments involving competing plants. We conducted a reciprocal greenhouse experiment to examine how the growth of prairie grass species depended on the soil communities cultured by conspecific or heterospecific plant species in the field. The source soil came from monocultures in a long‐term competition experiment (LTCE; Cedar Creek Ecosystem Science Reserve, MN, USA). Within the LTCE, six species of perennial prairie grasses were grown in monocultures or in eight pairwise competition plots for 12 years under conditions of low or high soil nitrogen availability. In six cases, one species clearly excluded the other; in two cases, the pair appeared to coexist. In year 15, we gathered soil from all 12 soil types (monocultures of six species by two nitrogen levels) and grew seedlings of all six species in each soil type for 7 weeks. Using biomass estimates from this greenhouse experiment, we predicted coexistence or competitive exclusion using pairwise PSFs, as derived by Bever and colleagues, and compared model predictions to observed outcomes within the LTCE. Pairwise PSFs among the species pairs ranged from negative, which is predicted to promote coexistence, to positive, which is predicted to promote competitive exclusion. However, these short‐term PSF predictions bore no systematic resemblance to the actual outcomes of competition observed in the LTCE. Other forces may have more strongly influenced the competitive interactions or critical assumptions that underlie the PSF predictions may not have been met. Importantly, the pairwise PSF score derived by Bever et al. is only valid when the two species exhibit an internal equilibrium, corresponding to the Lotka–Volterra competition outcomes of stable coexistence and founder control. Predicting the other two scenarios, competitive exclusion by either species irrespective of initial conditions, requires measuring biomass in uncultured soil, which is methodologically challenging. Subject to several caveats that we discuss, our results call into question whether long‐term competitive outcomes in the field can be predicted from the results of short‐term PSF experiments.more » « less
-
Abstract Savanna tree species vary in the magnitude of their response to grass competition, but the functional traits that explain this variation remain largely unknown. To address this gap, we grew seedlings of 10 savanna tree species with and without grasses in a controlled greenhouse experiment. We found strong interspecific differences in tree competitive response, which was positively related to photosynthesis rates, suggesting a trade‐off between the ability to grow well under conditions of low and high grass biomass across tree species. We also found no competitive effect of tree seedlings on grass, suggesting strong tree‐grass competitive asymmetry. Our results identify a potentially important trade‐off that enhances our ability to predict how savanna tree communities might respond to variation in grass competition.more » « less
-
Species‐specific phenological responses to changing climate are reshuffling the timing of species interactions, however we do not fully understand the consequences of these changes for species' population dynamics and community composition. In this study, we experimentally manipulated the timing of germination for five annual plant species from southern California and used pairwise competition experiments and coexistence theory to quantify how phenological shifts may impact species interactions and coexistence. We found that phenological shifts may help promote coexistence when they confer an advantage for competitively inferior species, but in other cases promote dominance by competitively superior species. Earlier germination generally increased species' performance relative to competitors, but the relative changes in intra‐and inter‐specific interactions caused more complex effects on niche and fitness differences. Phenological differences tended to reduce stabilising niche differences for many species pairs and reduced overall coexistence probabilities. Synthesis. While phenological differences among species have typically been considered a form of niche partitioning, it seems increasingly likely that phenological offsets could destabilise species coexistence. The net effects of changing phenology on species coexistence will depend on the complex combinations of effects on intra‐ and inter‐specific interactions, which remain challenging to predict.more » « less
An official website of the United States government
