skip to main content


Title: RF antenna helicity dependent particle heating in a helicon source
Abstract

Experiments have demonstrated that ion phenomena, such as the lower hybrid resonance, play an important role in helicon source operation. Damping of the slow branch of the bounded whistler wave at the edge of a helicon source (i.e. the Trivelpiece-Gould mode) has been correlated with the creation of energetic electrons, heating of ions at the plasma edge, and anisotropic ion heating. Here we present ion velocity distribution function measurements, electron density and temperature measurements, and magnetic fluctuation measurements on both sides of anm=|1|helical antenna in a helicon source as a function of the driving frequency, magnetic field strength, and magnetic field orientation relative to the antenna helicity. Significant electron and ion heating (up to two times larger) occurs on the side of the antenna consistent with the launch of them=+1mode. The electron and ion heating occurs within one electron skin depth of the plasma edge, where slow wave damping is expected. The source parameters for enhanced particle heating are also consistent with lower hybrid resonance effects, which can only occur for Trivelpiece-Gould wave excitation.

 
more » « less
NSF-PAR ID:
10500223
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Plasma Sources Science and Technology
Volume:
33
Issue:
4
ISSN:
0963-0252
Format(s):
Medium: X Size: Article No. 045009
Size(s):
["Article No. 045009"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less
  2. Abstract

    The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spin-precession in a cold beam of ThO molecules in their metastableH(3Δ1)state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the long-livedQ(3Δ2)state of ThO, and show that this state is a very useful resource for both these purposes. TheQstate lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQstate, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQstate is also large enough to be used as a sensitive co-magnetometer in ACME. Finally, we show that theQstate has a large transition dipole moment to theC(1Π1)state, which allows for efficient population transfer between the ground stateX(1Σ+)and theQstate viaXCQStimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment ofCstate, theXCtransition dipole moment, and branching ratios of decays from theCstate.

     
    more » « less
  3. Abstract

    Broken symmetries in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. The Fermionic spectrum of confined (quasi-2D)3He-A consists of branches of chiral edge states. The negative energy states are related to the ground-state angular momentum,Lz=(N/2), forN/2Cooper pairs. The power law suppression of the angular momentum,Lz(T)(N/2)[123(πT/Δ)2]for0TTc, in the fully gapped 2D chiral A-phase reflects the thermal excitation of the chiral edge Fermions. We discuss the effects of wave function overlap, and hybridization between edge states confined near opposing edge boundaries on the edge currents, ground-state angular momentum and ground-state order parameter of superfluid3He thin films. Under strong lateral confinement, the chiral A phase undergoes a sequence of phase transitions, first to a pair density wave (PDW) phase with broken translational symmetry atDc216ξ0. The PDW phase is described by a periodic array of chiral domains with alternating chirality, separated by domain walls. The period of PDW phase diverges as the confinement lengthDDc2. The PDW phase breaks time-reversal symmetry, translation invariance, but is invariant under the combination of time-reversal and translation by a one-half period of the PDW. The mass current distribution of the PDW phase reflects this combined symmetry, and originates from the spectra of edge Fermions and the chiral branches bound to the domain walls. Under sufficiently strong confinement a second-order transition occurs to the non-chiral ‘polar phase’ atDc19ξ0, in which a single p-wave orbital state of Cooper pairs is aligned along the channel.

     
    more » « less
  4. Abstract

    A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrumf0(,p)with the Green’s functionG(r,p;p), which describes the monoenergetic spectrum solution in whichf0δ(pp)asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution forG(r,p;p). In this paper, we explore for the first time, solutions for more general and realistic forms forf0(,p). The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering timeτ(r,p)=τ0(p/p0)αin the shear flow region 0 <r<r2, andτ(r,p)=τ0(p/p0)α(r/r2)s, wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distributionψp(r,p;p)that particles observed at (r,p) originated fromr→ ∞ with momentump. The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described.

     
    more » « less
  5. Abstract

    Parker Solar Probe (PSP) observed sub-Alfvénic solar wind intervals during encounters 8–14, and low-frequency magnetohydrodynamic (MHD) turbulence in these regions may differ from that in super-Alfvénic wind. We apply a new mode decomposition analysis to the sub-Alfvénic flow observed by PSP on 2021 April 28, identifying and characterizing entropy, magnetic islands, forward and backward Alfvén waves, including weakly/nonpropagating Alfvén vortices, forward and backward fast and slow magnetosonic (MS) modes. Density fluctuations are primarily and almost equally entropy- and backward-propagating slow MS modes. The mode decomposition provides phase information (frequency and wavenumberk) for each mode. Entropy density fluctuations have a wavenumber anisotropy ofkk, whereas slow-mode density fluctuations havek>k. Magnetic field fluctuations are primarily magnetic island modes (δBi) with anO(1) smaller contribution from unidirectionally propagating Alfvén waves (δBA+) giving a variance anisotropy ofδBi2/δBA2=4.1. Incompressible magnetic fluctuations dominate compressible contributions from fast and slow MS modes. The magnetic island spectrum is Kolmogorov-likek1.6in perpendicular wavenumber, and the unidirectional Alfvén wave spectra arek1.6andk1.5. Fast MS modes propagate at essentially the Alfvén speed with anticorrelated transverse velocity and magnetic field fluctuations and are almost exclusively magnetic due toβp≪ 1. Transverse velocity fluctuations are the dominant velocity component in fast MS modes, and longitudinal fluctuations dominate in slow modes. Mode decomposition is an effective tool in identifying the basic building blocks of MHD turbulence and provides detailed phase information about each of the modes.

     
    more » « less