Abstract The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spin-precession in a cold beam of ThO molecules in their metastable state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the long-lived state of ThO, and show that this state is a very useful resource for both these purposes. TheQstate lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQstate, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQstate is also large enough to be used as a sensitive co-magnetometer in ACME. Finally, we show that theQstate has a large transition dipole moment to the state, which allows for efficient population transfer between the ground state and theQstate via Stimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment ofCstate, the transition dipole moment, and branching ratios of decays from theCstate. 
                        more » 
                        « less   
                    
                            
                            RF antenna helicity dependent particle heating in a helicon source
                        
                    
    
            Abstract Experiments have demonstrated that ion phenomena, such as the lower hybrid resonance, play an important role in helicon source operation. Damping of the slow branch of the bounded whistler wave at the edge of a helicon source (i.e. the Trivelpiece-Gould mode) has been correlated with the creation of energetic electrons, heating of ions at the plasma edge, and anisotropic ion heating. Here we present ion velocity distribution function measurements, electron density and temperature measurements, and magnetic fluctuation measurements on both sides of an helical antenna in a helicon source as a function of the driving frequency, magnetic field strength, and magnetic field orientation relative to the antenna helicity. Significant electron and ion heating (up to two times larger) occurs on the side of the antenna consistent with the launch of the mode. The electron and ion heating occurs within one electron skin depth of the plasma edge, where slow wave damping is expected. The source parameters for enhanced particle heating are also consistent with lower hybrid resonance effects, which can only occur for Trivelpiece-Gould wave excitation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1902111
- PAR ID:
- 10500223
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Plasma Sources Science and Technology
- Volume:
- 33
- Issue:
- 4
- ISSN:
- 0963-0252
- Format(s):
- Medium: X Size: Article No. 045009
- Size(s):
- Article No. 045009
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.more » « less
- 
            Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations.more » « less
- 
            Abstract We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,f, used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenfand other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient and black-hole mass, (ii) marginal evidence for a similar correlation between and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with and , and (iv) marginal evidence for an anticorrelation of inclination angle with , , and . Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, , and the virial coefficient, , and investigate how BLR properties might be related to line-profile shape usingcaramelmodels.more » « less
- 
            Abstract This paper considers the Westervelt equation, one of the most widely used models in nonlinear acoustics, and seeks to recover two spatially-dependent parameters of physical importance from time-trace boundary measurements. Specifically, these are the nonlinearity parameter often referred to as in the acoustics literature and the wave speed . The determination of the spatial change in these quantities can be used as a means of imaging. We consider identifiability from one or two boundary measurements as relevant in these applications. For a reformulation of the problem in terms of the squared slowness and the combined coefficient we devise a frozen Newton method and prove its convergence. The effectiveness (and limitations) of this iterative scheme are demonstrated by numerical examples.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
