ABSTRACT We apply the barred Schwarzschild method developed by Tahmasebzadeh et al. (2022) to a barred S0 galaxy, NGC 4371, observed by IFU instruments from the TIMER and ATLAS3D projects. We construct the gravitational potential by combining a fixed black hole mass, a spherical dark matter halo, and stellar mass distribution deprojected from 3.6 μm S$^4$G image considering an axisymmetric disc and a triaxial bar. We independently modelled kinematic data from TIMER and ATLAS3D. Both models fit the data remarkably well. We find a consistent bar pattern speed from the two sets of models with $$\Omega _{\rm p} = 23.6 \pm 2.8 \, \mathrm{km \, s^{-1} \, kpc^{-1} }$$ and $$\Omega _{\rm p} = 22.4 \pm 3.5 \, \mathrm{km \, s^{-1} \, kpc^{-1} }$$, respectively. The dimensionless bar rotation parameter is determined to be $$\mathcal {R} \equiv R_{\rm cor}/R_{\rm bar}=1.88 \pm 0.37$$, indicating a likely slow bar in NGC 4371. Additionally, our model predicts a high amount of dark matter within the bar region ($$M_{\rm DM}/ M_{\rm total}$$\sim 0.51 \pm 0.06$$), which, aligned with the predictions of cosmological simulations, indicates that fast bars are generally found in baryon-dominated discs. Based on the best-fitting model, we further decompose the galaxy into multiple 3D orbital structures, including a BP/X bar, a classical bulge, a nuclear disc, and a main disc. The BP/X bar is not perfectly included in the input 3D density model, but BP/X-supporting orbits are picked through the fitting to the kinematic data. This is the first time a real barred galaxy has been modelled utilizing the Schwarzschild method including a 3D bar.
more »
« less
Deprojection and stellar dynamical modelling of boxy/peanut bars in edge-on discs
ABSTRACT We present a new method to infer the 3D luminosity distributions of edge-on barred galaxies with boxy-peanut/X (BP/X) shaped structures from their 2D surface brightness distributions. Our method relies on forward modelling of newly introduced parametric 3D density distributions for the BP/X bar, disc and other components using an existing image fitting software package (imfit). We validate our method using an N-body simulation of a barred disc galaxy with a moderately strong BP/X shape. For fixed orientation angles, the derived 3D BP/X-shaped density distribution is shown to yield a gravitational potential that is accurate to at least 5 per cent and forces that are accurate to at least 15 per cent, with average errors being $$\sim 1.5~{{\ \rm per\ cent}}$$ for both. When additional quantities of interest, such as the orientation of the bar to the line of sight, its pattern speed, and the stellar mass-to-light ratio are unknown they can be recovered to high accuracy by providing the parametric density distribution to the Schwarzschild modelling code FORSTAND. We also explore the ability of our models to recover the mass of the central supermassive black hole. This method is the first to be able to accurately recover both the orientation of the bar to the line of sight and its pattern speed when the disc is perfectly edge-on.
more »
« less
- Award ID(s):
- 2009122
- PAR ID:
- 10500251
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 530
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1195-1217
- Size(s):
- p. 1195-1217
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We study the bar pattern speeds and corotation radii of 225 barred galaxies, using integral field unit data from MaNGA and the Tremaine–Weinberg method. Our sample, which is divided between strongly and weakly barred galaxies identified via Galaxy Zoo, is the largest that this method has been applied to. We find lower pattern speeds for strongly barred galaxies than for weakly barred galaxies. As simulations show that the pattern speed decreases as the bar exchanges angular momentum with its host, these results suggest that strong bars are more evolved than weak bars. Interestingly, the corotation radius is not different between weakly and strongly barred galaxies, despite being proportional to bar length. We also find that the corotation radius is significantly different between quenching and star-forming galaxies. Additionally, we find that strongly barred galaxies have significantly lower values for $$\mathcal {R}$$, the ratio between the corotation radius and the bar radius, than weakly barred galaxies, despite a big overlap in both distributions. This ratio classifies bars into ultrafast bars ($$\mathcal {R} \lt $$ 1.0; 11 per cent of our sample), fast bars (1.0 $$\lt \mathcal {R} \lt $$ 1.4; 27 per cent), and slow bars ($$\mathcal {R} \gt $$ 1.4; 62 per cent). Simulations show that $$\mathcal {R}$$ is correlated with the bar formation mechanism, so our results suggest that strong bars are more likely to be formed by different mechanisms than weak bars. Finally, we find a lower fraction of ultrafast bars than most other studies, which decreases the recently claimed tension with Lambda cold dark matter. However, the median value of $$\mathcal {R}$$ is still lower than what is predicted by simulations.more » « less
-
Abstract Barred galaxies exhibit boxy/peanut or X-shapes (BP/X) protruding from their disks in edge-on views. Two types of BP/X morphologies exist depending on whether the X-wings meet at the center (CX) or are off-centered (OX). Orbital studies indicate that various orbital types can generate X-shaped structures. Here we provide a classification approach that identifies the specific orbit families responsible for generating OX- and CX-shaped structures. Applying this approach to three differentN-body bar models, we show that both OX and CX structures are associated with thex1 orbit family, but OX-supporting orbits possess higher angular momentum (closer tox1 orbits) than orbits in CX structures. Consequently, as the bar slows down, the contribution of higher angular momentum OX-supporting orbits decreases and that of lower angular momentum orbits increases, resulting in an evolution of the morphology from OX to CX. If the bar does not slow down, the shape of the BP/X structure and the fractions of OX/CX-supporting orbits remain substantially unchanged. Bars that do not undergo buckling but that do slow down initially show the OX structure and are dominated by high angular momentum orbits, transitioning to a CX morphology. Bars that buckle exhibit a combination of both OX- and CX-supporting orbits immediately after the buckling but become more CX dominated as their pattern speed decreases. This study demonstrates that the evolution of BP/X morphology and orbit populations strongly depends on the evolution of the bar angular momentum.more » « less
-
ABSTRACT We use the magnetic-hydrodynamical simulation TNG50 to study the evolution of barred massive disc galaxies. Massive spiral galaxies are already present as early as z = 4, and bar formation takes place already at those early times. The bars grow longer and stronger as the host galaxies evolve, with the bar sizes increasing at a pace similar to that of the disc scalelengths. The bar fraction mildly evolves with redshift for galaxies with $$M_{*}\ge 10^{10}\rm M_{\odot }$$, being greater than $$\sim 40{{\ \rm per\ cent}}$$ at 0.5 < z < 3 and $$\sim 30{{\ \rm per\ cent}}$$ at z = 0. When bars larger than a given physical size ($$\ge 2\, \rm kpc$$) or the angular resolution limit of twice the I-band angular PSF FWHM of the HST are considered, the bar fraction dramatically decreases with increasing redshift, reconciling the theoretical predictions with observational data. We find that barred galaxies have an older stellar population, lower gas fractions, and star formation rates than unbarred galaxies. In most cases, the discs of barred galaxies assembled earlier and faster than the discs of unbarred galaxies. We also find that barred galaxies are typical in haloes with larger concentrations and smaller spin parameters than unbarred galaxies. Furthermore, the inner regions of barred galaxies are more baryon-dominated than those of unbarred galaxies but have comparable global stellar mass fractions. Our findings suggest that the bar population could be used as a potential tracer of the buildup of disc galaxies and their host haloes. With this paper, we release a catalogue of barred galaxies in TNG50 at six redshifts between z = 4 and 0.more » « less
-
ABSTRACT The dark matter (DM) distribution in dwarf galaxies provides crucial insights into both structure formation and the particle nature of DM. GraphNPE (Graph Neural Posterior Estimator), first introduced in Nguyen et al. (2023), is a novel simulation-based inference framework that combines graph neural networks and normalizing flows to infer the DM density profile from line-of-sight stellar velocities. Here, we apply GraphNPE to satellite dwarf galaxies in the FIRE-2 Latte simulation suite of Milky Way-mass haloes, testing it against both Cold and Self-Interacting DM scenarios. Our method demonstrates superior precision compared to conventional Jeans-based approaches, recovering DM density profiles to within the 95 per cent confidence level even in systems with as few as 30 tracers. Moreover, we present the first evaluation of mass modelling methods in constraining two key parameters from realistic simulations: the peak circular velocity, $$V_\mathrm{max}$$, and the peak virial mass, $$M_\mathrm{200m}^\mathrm{peak}$$. Using only line-of-sight velocities, GraphNPE can reliably recover both $$V_\mathrm{max}$$ and $$M_\mathrm{200m}^\mathrm{peak}$$ within our quoted uncertainties, including those experiencing tidal effects ($$\gtrsim 63~{{\rm per\ cent}}$$ of systems are recovered within our 68 per cent confidence intervals and $$\gtrsim 92~{{\rm per\ cent}}$$ within our 95 per cent confidence intervals). The method achieves $$10-20~{{\rm per\ cent}}$$ accuracy in $$V_\mathrm{max}$$ recovery, while $$M_\mathrm{200m}^\mathrm{peak}$$ is recovered to $$0.1-0.4 \, \mathrm{dex}$$ accuracy. This work establishes GraphNPE as a robust tool for inferring DM density profiles in dwarf galaxies, offering promising avenues for constraining DM models. The framework’s potential extends beyond this study, as it can be adapted to non-spherical and disequilibrium models, showcasing the broader utility of simulation-based inference and graph-based learning in astrophysics.more » « less
An official website of the United States government
