Abstract We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if$$\Gamma $$is a countable discrete abelian group,$$\varphi , \psi \in \mathrm {End}(\Gamma )$$, and$$\psi - \varphi $$is an injective endomorphism with finite index image, then for any ergodic measure-preserving$$\Gamma $$-system$$( X, {\mathcal {X}}, \mu , (T_g)_{g \in \Gamma } )$$, any measurable set$$A \in {\mathcal {X}}$$, and any$${\varepsilon }> 0$$, there is a syndetic set of$$g \in \Gamma$$such that$$\mu ( A \cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A ) > \mu(A)^3 - \varepsilon$$. This generalizes the main results of Ackelsberget al[Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107]. For the group$$\Gamma = {\mathbb {Z}}^d$$, the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to thequasi-affine(orConze–Lesigne) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to$$\varphi $$and$$\psi $$) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum.
more »
« less
On a multi-parameter variant of the Bellow–Furstenberg problem
Abstract We prove convergence in norm and pointwise almost everywhere on$$L^p$$,$$p\in (1,\infty )$$, for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.
more »
« less
- Award ID(s):
- 2154712
- PAR ID:
- 10500301
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Forum of Mathematics, Pi
- Volume:
- 11
- ISSN:
- 2050-5086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.more » « less
-
Abstract For a connected reductive groupGover a nonarchimedean local fieldFof positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter$${\mathcal {L}}^{ss}(\pi )$$to each irreducible representation$$\pi $$. Our first result shows that the Genestier-Lafforgue parameter of a tempered$$\pi $$can be uniquely refined to a tempered L-parameter$${\mathcal {L}}(\pi )$$, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of$${\mathcal {L}}^{ss}(\pi )$$for unramifiedGand supercuspidal$$\pi $$constructed by induction from an open compact (modulo center) subgroup. If$${\mathcal {L}}^{ss}(\pi )$$is pure in an appropriate sense, we show that$${\mathcal {L}}^{ss}(\pi )$$is ramified (unlessGis a torus). If the inducing subgroup is sufficiently small in a precise sense, we show$$\mathcal {L}^{ss}(\pi )$$is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is$${\mathbb {P}}^1$$and a simple application of Deligne’s Weil II.more » « less
-
Abstract Let$${{\mathcal {H}}}$$be a stratum of translation surfaces with at least two singularities, let$$m_{{{\mathcal {H}}}}$$denote the Masur-Veech measure on$${{\mathcal {H}}}$$, and let$$Z_0$$be a flow on$$({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$$obtained by integrating a Rel vector field. We prove that$$Z_0$$is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces$$({\mathcal L}, m_{{\mathcal L}})$$, where$${\mathcal L} \subset {{\mathcal {H}}}$$is an orbit-closure for the action of$$G = \operatorname {SL}_2({\mathbb {R}})$$(i.e., an affine invariant subvariety) and$$m_{{\mathcal L}}$$is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of$$Z_0$$with respect to any of the measures$$m_{{{\mathcal L}}}$$is zero.more » « less
-
Abstract A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary$$r$$-colouring of the complete$$k$$-uniform hypergraph$$K_n^k$$when$$k\geq 2$$and$$k\in \{r-1,r\}$$. We prove a result which says that if one replaces$$K_n^k$$in Gyárfás’ theorem by any ‘expansive’$$k$$-uniform hypergraph on$$n$$vertices (that is, a$$k$$-uniform hypergraph$$G$$on$$n$$vertices in which$$e(V_1, \ldots, V_k)\gt 0$$for all disjoint sets$$V_1, \ldots, V_k\subseteq V(G)$$with$$|V_i|\gt \alpha$$for all$$i\in [k]$$), then one gets a largest monochromatic component of essentially the same size (within a small error term depending on$$r$$and$$\alpha$$). As corollaries we recover a number of known results about large monochromatic components in random hypergraphs and random Steiner triple systems, often with drastically improved bounds on the error terms. Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of an arbitrary$$r$$-partite$$r$$-uniform hypergraph$$H$$with$$n$$edges in which every set of$$k$$edges has a common intersection. In this language, our result says that if one replaces the condition that every set of$$k$$edges has a common intersection with the condition that for every collection of$$k$$disjoint sets$$E_1, \ldots, E_k\subseteq E(H)$$with$$|E_i|\gt \alpha$$, there exists$$(e_1, \ldots, e_k)\in E_1\times \cdots \times E_k$$such that$$e_1\cap \cdots \cap e_k\neq \emptyset$$, then the smallest possible maximum degree of$$H$$is essentially the same (within a small error term depending on$$r$$and$$\alpha$$). We prove our results in this dual setting.more » « less
An official website of the United States government

