Abstract Let$$\varphi _1,\ldots ,\varphi _r\in {\mathbb Z}[z_1,\ldots z_k]$$be integral linear combinations of elementary symmetric polynomials with$$\text {deg}(\varphi _j)=k_j\ (1\le j\le r)$$, where$$1\le k_1<\cdots . Subject to the condition$$k_1+\cdots +k_r\ge \tfrac {1}{2}k(k-~1)+2$$, we show that there is a paucity of nondiagonal solutions to the Diophantine system$$\varphi _j({\mathbf x})=\varphi _j({\mathbf y})\ (1\le j\le r)$$.
more »
« less
Large monochromatic components in expansive hypergraphs
Abstract A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary$$r$$-colouring of the complete$$k$$-uniform hypergraph$$K_n^k$$when$$k\geq 2$$and$$k\in \{r-1,r\}$$. We prove a result which says that if one replaces$$K_n^k$$in Gyárfás’ theorem by any ‘expansive’$$k$$-uniform hypergraph on$$n$$vertices (that is, a$$k$$-uniform hypergraph$$G$$on$$n$$vertices in which$$e(V_1, \ldots, V_k)\gt 0$$for all disjoint sets$$V_1, \ldots, V_k\subseteq V(G)$$with$$|V_i|\gt \alpha$$for all$$i\in [k]$$), then one gets a largest monochromatic component of essentially the same size (within a small error term depending on$$r$$and$$\alpha$$). As corollaries we recover a number of known results about large monochromatic components in random hypergraphs and random Steiner triple systems, often with drastically improved bounds on the error terms. Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of an arbitrary$$r$$-partite$$r$$-uniform hypergraph$$H$$with$$n$$edges in which every set of$$k$$edges has a common intersection. In this language, our result says that if one replaces the condition that every set of$$k$$edges has a common intersection with the condition that for every collection of$$k$$disjoint sets$$E_1, \ldots, E_k\subseteq E(H)$$with$$|E_i|\gt \alpha$$, there exists$$(e_1, \ldots, e_k)\in E_1\times \cdots \times E_k$$such that$$e_1\cap \cdots \cap e_k\neq \emptyset$$, then the smallest possible maximum degree of$$H$$is essentially the same (within a small error term depending on$$r$$and$$\alpha$$). We prove our results in this dual setting.
more »
« less
- Award ID(s):
- 1954170
- PAR ID:
- 10519797
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Combinatorics, Probability and Computing
- ISSN:
- 0963-5483
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An$$r$$-daisy determined by a pair of disjoint sets$$K$$and$$M$$is the$$(r+|K|)$$-uniform hypergraph$$\{K\cup P\,{:}\, P\in M^{(r)}\}$$. Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of$$r$$-daisies and also for special cases where the size of the kernel is bounded.more » « less
-
Abstract Theq-colour Ramsey number of ak-uniform hypergraphHis the minimum integerNsuch that anyq-colouring of the completek-uniform hypergraph onNvertices contains a monochromatic copy ofH. The study of these numbers is one of the central topics in Combinatorics. In 1973, Erdős and Graham asked to maximise the Ramsey number of a graph as a function of the number of its edges. Motivated by this problem, we study the analogous question for hypergaphs. For fixed$$k \ge 3$$and$$q \ge 2$$we prove that the largest possibleq-colour Ramsey number of ak-uniform hypergraph withmedges is at most$$\mathrm{tw}_k(O(\sqrt{m})),$$where tw denotes the tower function. We also present a construction showing that this bound is tight for$$q \ge 4$$. This resolves a problem by Conlon, Fox and Sudakov. They previously proved the upper bound for$$k \geq 4$$and the lower bound for$$k=3$$. Although in the graph case the tightness follows simply by considering a clique of appropriate size, for higher uniformities the construction is rather involved and is obtained by using paths in expander graphs.more » « less
-
Abstract Let$$P_1, \ldots , P_m \in \mathbb {K}[\mathrm {y}]$$be polynomials with distinct degrees, no constant terms and coefficients in a general local field$$\mathbb {K}$$. We give a quantitative count of the number of polynomial progressions$$x, x+P_1(y), \ldots , x + P_m(y)$$lying in a set$$S\subseteq \mathbb {K}$$of positive density. The proof relies on a general$$L^{\infty }$$inverse theorem which is of independent interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has the potential to be applied in a number of problems in real, complex andp-adic analysis.more » « less
-
Abstract Let$$\Sigma$$be an alphabet and$$\mu$$be a distribution on$$\Sigma ^k$$for some$$k \geqslant 2$$. Let$$\alpha \gt 0$$be the minimum probability of a tuple in the support of$$\mu$$(denoted$$\mathsf{supp}(\mu )$$). We treat the parameters$$\Sigma , k, \mu , \alpha$$as fixed and constant. We say that the distribution$$\mu$$has a linear embedding if there exist an Abelian group$$G$$(with the identity element$$0_G$$) and mappings$$\sigma _i : \Sigma \rightarrow G$$,$$1 \leqslant i \leqslant k$$, such that at least one of the mappings is non-constant and for every$$(a_1, a_2, \ldots , a_k)\in \mathsf{supp}(\mu )$$,$$\sum _{i=1}^k \sigma _i(a_i) = 0_G$$. In [Bhangale-Khot-Minzer, STOC 2022], the authors asked the following analytical question. Let$$f_i: \Sigma ^n\rightarrow [\!-1,1]$$be bounded functions, such that at least one of the functions$$f_i$$essentially has degree at least$$d$$, meaning that the Fourier mass of$$f_i$$on terms of degree less than$$d$$is at most$$\delta$$. If$$\mu$$has no linear embedding (over any Abelian group), then is it necessarily the case that\begin{equation*}\left | \mathop {\mathbb{E}}_{({\textbf {x}}_1, {\textbf {x}}_2, \ldots , {\textbf {x}}_k)\sim \mu ^{\otimes n}}[f_1({\textbf {x}}_1)f_2({\textbf {x}}_2)\cdots f_k({\textbf {x}}_k)] \right | = o_{d, \delta }(1),\end{equation*}where the right hand side$$\to 0$$as the degree$$d \to \infty$$and$$\delta \to 0$$? In this paper, we answer this analytical question fully and in the affirmative for$$k=3$$. We also show the following two applications of the result.1.The first application is related to hardness of approximation. Using the reduction from [5], we show that for every$$3$$-ary predicate$$P:\Sigma ^3 \to \{0,1\}$$such that$$P$$has no linear embedding, anSDP (semi-definite programming) integrality gap instanceof a$$P$$-Constraint Satisfaction Problem (CSP) instance with gap$$(1,s)$$can be translated into a dictatorship test with completeness$$1$$and soundness$$s+o(1)$$, under certain additional conditions on the instance.2.The second application is related to additive combinatorics. We show that if the distribution$$\mu$$on$$\Sigma ^3$$has no linear embedding, marginals of$$\mu$$are uniform on$$\Sigma$$, and$$(a,a,a)\in \texttt{supp}(\mu )$$for every$$a\in \Sigma$$, then every large enough subset of$$\Sigma ^n$$contains a triple$$({\textbf {x}}_1, {\textbf {x}}_2,{\textbf {x}}_3)$$from$$\mu ^{\otimes n}$$(and in fact a significant density of such triples).more » « less
An official website of the United States government

