skip to main content


Title: Attention Mobilization as a Modulator of Listening Effort: Evidence From Pupillometry

Listening to speech in noise can require substantial mental effort, even among younger normal-hearing adults. The task-evoked pupil response (TEPR) has been shown to track the increased effort exerted to recognize words or sentences in increasing noise. However, few studies have examined the trajectory of listening effort across longer, more natural, stretches of speech, or the extent to which expectations about upcoming listening difficulty modulate the TEPR. Seventeen younger normal-hearing adults listened to 60-s-long audiobook passages, repeated three times in a row, at two different signal-to-noise ratios (SNRs) while pupil size was recorded. There was a significant interaction between SNR, repetition, and baseline pupil size on sustained listening effort. At lower baseline pupil sizes, potentially reflecting lower attention mobilization, TEPRs were more sustained in the harder SNR condition, particularly when attention mobilization remained low by the third presentation. At intermediate baseline pupil sizes, differences between conditions were largely absent, suggesting these listeners had optimally mobilized their attention for both SNRs. Lastly, at higher baseline pupil sizes, potentially reflecting overmobilization of attention, the effect of SNR was initially reversed for the second and third presentations: participants initially appeared to disengage in the harder SNR condition, resulting in reduced TEPRs that recovered in the second half of the story. Together, these findings suggest that the unfolding of listening effort over time depends critically on the extent to which individuals have successfully mobilized their attention in anticipation of difficult listening conditions.

 
more » « less
NSF-PAR ID:
10500326
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Trends in Hearing
Volume:
28
ISSN:
2331-2165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Listening to speech in noise can require substantial mental effort, even among younger normal-hearing adults. The task-evoked pupil response (TEPR) has been shown to track the increased effort exerted to recognize words or sentences in increasing noise. However, few studies have examined the trajectory of listening effort across longer, more natural, stretches of speech, or the extent to which expectations about upcoming listening difficulty modulate the TEPR. Seventeen younger normal-hearing adults listened to 60-s-long audiobook passages, repeated three times in a row, at two different signal-to-noise ratios (SNRs) while pupil size was recorded. There was a significant interaction between SNR, repetition, and baseline pupil size on sustained listening effort. At lower baseline pupil sizes, potentially reflecting lower attention mobilization, TEPRs were more sustained in the harder SNR condition, particularly when attention mobilization remained low by the third presentation. At intermediate baseline pupil sizes, differences between conditions were largely absent, suggesting these listeners had optimally mobilized their attention for both SNRs. Lastly, at higher baseline pupil sizes, potentially reflecting over-mobilization of attention, the effect of SNR was initially reversed for the second and third presentations: participants initially appeared to disengage in the harder SNR condition, resulting in reduced TEPRs that recovered in the second half of the story. Together, these findings suggest that the unfolding of listening effort over time depends critically on the extent to which individuals have successfully mobilized their attention in anticipation of difficult listening conditions. 
    more » « less
  2. Abstract

    Everyday environments often contain distracting competing talkers and background noise, requiring listeners to focus their attention on one acoustic source and reject others. During this auditory attention task, listeners may naturally interrupt their sustained attention and switch attended sources. The effort required to perform this attention switch has not been well studied in the context of competing continuous speech. In this work, we developed two variants of endogenous attention switching and a sustained attention control. We characterized these three experimental conditions under the context of decoding auditory attention, while simultaneously evaluating listening effort and neural markers of spatial‐audio cues. A least‐squares, electroencephalography (EEG)‐based, attention decoding algorithm was implemented across all conditions. It achieved an accuracy of 69.4% and 64.0% when computed over nonoverlapping 10 and 5‐s correlation windows, respectively. Both decoders illustrated smooth transitions in the attended talker prediction through switches at approximately half of the analysis window size (e.g., the mean lag taken across the two switch conditions was 2.2 s when the 5‐s correlation window was used). Expended listening effort, as measured by simultaneous EEG and pupillometry, was also a strong indicator of whether the listeners sustained attention or performed an endogenous attention switch (peak pupil diameter measure [ ] and minimum parietal alpha power measure [ ]). We additionally found evidence of talker spatial cues in the form of centrotemporal alpha power lateralization ( ). These results suggest that listener effort and spatial cues may be promising features to pursue in a decoding context, in addition to speech‐based features.

     
    more » « less
  3. null (Ed.)
    Abstract Background Ecological momentary assessment (EMA) is a methodology involving repeated surveys to collect in situ data that describe respondents' current or recent experiences and related contexts in their natural environments. Audiology literature investigating the test-retest reliability of EMA is scarce. Purpose This article examines the test-retest reliability of EMA in measuring the characteristics of listening contexts and listening experiences. Research Design An observational study. Study Sample Fifty-one older adults with hearing loss. Data Collection and Analysis The study was part of a larger study that examined the effect of hearing aid technologies. The larger study had four trial conditions and outcome was measured using a smartphone-based EMA system. After completing the four trial conditions, participants repeated one of the conditions to examine the EMA test-retest reliability. The EMA surveys contained questions that assessed listening context characteristics including talker familiarity, talker location, and noise location, as well as listening experiences including speech understanding, listening effort, loudness satisfaction, and hearing aid satisfaction. The data from multiple EMA surveys collected by each participant were aggregated in each of the test and retest conditions. Test-retest correlation on the aggregated data was then calculated for each EMA survey question to determine the reliability of EMA. Results At the group level, listening context characteristics and listening experience did not change between the test and retest conditions. The test-retest correlation varied across the EMA questions, with the highest being the questions that assessed talker location (median r = 1.0), reverberation (r = 0.89), and speech understanding (r = 0.85), and the lowest being the items that quantified noise location (median r = 0.63), talker familiarity (r = 0.46), listening effort (r = 0.61), loudness satisfaction (r = 0.60), and hearing aid satisfaction (r = 0.61). Conclusion Several EMA questions yielded appropriate test-retest reliability results. The lower test-retest correlations for some EMA survey questions were likely due to fewer surveys completed by participants and poorly designed questions. Therefore, the present study stresses the importance of using validated questions in EMA. With sufficient numbers of surveys completed by respondents and with appropriately designed survey questions, EMA could have reasonable test-retest reliability in audiology research. 
    more » « less
  4. null (Ed.)
    Purpose Miniaturization of digital technologies has created new opportunities for remote health care and neuroscientific fieldwork. The current study assesses comparisons between in-home auditory brainstem response (ABR) recordings and recordings obtained in a traditional lab setting. Method Click-evoked and speech-evoked ABRs were recorded in 12 normal-hearing, young adult participants over three test sessions in (a) a shielded sound booth within a research lab, (b) a simulated home environment, and (c) the research lab once more. The same single-family house was used for all home testing. Results Analyses of ABR latencies, a common clinical metric, showed high repeatability between the home and lab environments across both the click-evoked and speech-evoked ABRs. Like ABR latencies, response consistency and signal-to-noise ratio (SNR) were robust both in the lab and in the home and did not show significant differences between locations, although variability between the home and lab was higher than latencies, with two participants influencing this lower repeatability between locations. Response consistency and SNR also patterned together, with a trend for higher SNRs to pair with more consistent responses in both the home and lab environments. Conclusions Our findings demonstrate the feasibility of obtaining high-quality ABR recordings within a simulated home environment that closely approximate those recorded in a more traditional recording environment. This line of work may open doors to greater accessibility to underserved clinical and research populations. 
    more » « less
  5. Speech recognition in noisy environments can be challenging and requires listeners to accurately segregate a target speaker from irrelevant background noise. Stochastic figure-ground (SFG) tasks in which temporally coherent inharmonic pure-tones must be identified from a background have been used to probe the non-linguistic auditory stream segregation processes important for speech-in-noise processing. However, little is known about the relationship between performance on SFG tasks and speech-in-noise tasks nor the individual differences that may modulate such relationships. In this study, 37 younger normal-hearing adults performed an SFG task with target figure chords consisting of four, six, eight, or ten temporally coherent tones amongst a background of randomly varying tones. Stimuli were designed to be spectrally and temporally flat. An increased number of temporally coherent tones resulted in higher accuracy and faster reaction times (RTs). For ten target tones, faster RTs were associated with better scores on the Quick Speech-in-Noise task. Individual differences in working memory capacity and self-reported musicianship further modulated these relationships. Overall, results demonstrate that the SFG task could serve as an assessment of auditory stream segregation accuracy and RT that is sensitive to individual differences in cognitive and auditory abilities, even among younger normal-hearing adults.

     
    more » « less