skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real Slices of ${\rm SL}(r,\mathbb{C})$-Opers
Through the action of an anti-holomorphic involution $$\sigma$$ (a real structure) on a Riemann surface $$X$$, we consider the induced actions on $${\rm SL}(r,\mathbb{C})$$-opers and study the real slices fixed by such actions. By constructing this involution for different descriptions of the space of $${\rm SL}(r,\mathbb{C})$$-opers, we are able to give a natural parametrization of the fixed point locus via differentials on the Riemann surface, which in turn allows us to study their geometric properties.  more » « less
Award ID(s):
2152107 1749013 1928930
PAR ID:
10500392
Author(s) / Creator(s):
; ;
Corporate Creator(s):
; ;
Publisher / Repository:
SIGMA
Date Published:
Journal Name:
Symmetry, Integrability and Geometry: Methods and Applications
ISSN:
1815-0659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we study Zimmer's conjecture for $$C^{1}$$ actions of lattice subgroup of a higher-rank simple Lie group with finite center on compact manifolds. We show that when the rank of an uniform lattice is larger than the dimension of the manifold, then the action factors through a finite group. For lattices in $${\rm SL}(n, {{\mathbb {R}}})$$ , the dimensional bound is sharp. 
    more » « less
  2. Abstract We investigate various spaces of $SL(r+1)$-opers and their deformations. For each type of such opers, we study the quantum/classical duality, which relates quantum integrable spin chains with classical solvable many body systems. In this context, quantum/classical dualities serve as an interplay between two different coordinate systems on the space of opers. We also establish correspondences between the underlying oper spaces, which recently had multiple incarnations in symplectic duality and bispectral duality. 
    more » « less
  3. Abstract Following the work of Mazzeo–Swoboda–Weiß–Witt [Duke Math. J. 165 (2016), 2227–2271] and Mochizuki [J. Topol. 9 (2016), 1021–1073], there is a map$$\overline{\Xi }$$between the algebraic compactification of the Dolbeault moduli space of$${\rm SL}(2,\mathbb{C})$$Higgs bundles on a smooth projective curve coming from the$$\mathbb{C}^\ast$$action and the analytic compactification of Hitchin’s moduli space of solutions to the$$\mathsf{SU}(2)$$self-duality equations on a Riemann surface obtained by adding solutions to the decoupled equations, known as ‘limiting configurations’. This map extends the classical Kobayashi–Hitchin correspondence. The main result that this article will show is that$$\overline{\Xi }$$fails to be continuous at the boundary over a certain subset of the discriminant locus of the Hitchin fibration. 
    more » « less
  4. This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ⁡ ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ⁡ ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ⁡ ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ⁡ ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
    more » « less
  5. We study invariant random subgroups (IRSs) of semidirect products $$G=A\rtimes \unicode[STIX]{x1D6E4}$$ . In particular, we characterize all IRSs of parabolic subgroups of $$\text{SL}_{d}(\mathbb{R})$$ , and show that all ergodic IRSs of $$\mathbb{R}^{d}\rtimes \text{SL}_{d}(\mathbb{R})$$ are either of the form $$\mathbb{R}^{d}\rtimes K$$ for some IRS of $$\text{SL}_{d}(\mathbb{R})$$ , or are induced from IRSs of $$\unicode[STIX]{x1D6EC}\rtimes \text{SL}(\unicode[STIX]{x1D6EC})$$ , where $$\unicode[STIX]{x1D6EC}<\mathbb{R}^{d}$$ is a lattice. 
    more » « less