Abstract Rainfall in southern California is highly variable, with some fluctuations explainable by climate patterns. Resulting runoff and heightened streamflow from rain events introduces freshwater plumes into the coastal ocean. Here we use a 105-year daily sea surface salinity record collected at Scripps Pier in La Jolla, California to show that El Niño Southern Oscillation and Pacific Decadal Oscillation both have signatures in coastal sea surface salinity. Averaging the freshest quantile of sea surface salinity over each year’s winter season provides a useful metric for connecting the coastal ocean to interannual winter rainfall variability, through the influence of freshwater plumes originating, at closest, 7.5 km north of Scripps Pier. This salinity metric has a clear relationship with dominant climate phases: negative Pacific Decadal Oscillation and La Niña conditions correspond consistently with lack of salinity anomaly/ dry winters. Fresh salinity anomalies (i.e., wet winters) occur during positive phase Pacific Decadal Oscillation and El Niño winters, although not consistently. This analysis emphasizes the strong influence that precipitation and consequent streamflow has on the coastal ocean, even in a region of overall low freshwater input, and provides an ocean-based metric for assessing decadal rainfall variability.
more »
« less
The Pacific Decadal Oscillation modulated marine heatwaves in the Northeast Pacific during past decades
Abstract The Pacific Decadal Oscillation has been suggested to play an important role in driving marine heatwaves in the Northeast Pacific during recent decades. Here we combine observations and climate model simulations to show that marine heatwaves became longer, stronger and more frequent off the Northeast Pacific coast under a positive Pacific Decadal Oscillation scenario, unlike what is found during a negative Pacific Decadal Oscillation scenario. This primarily results from the different mean-state sea surface temperatures between the two Pacific Decadal Oscillation phases. Compared to the cool (negative) phase of the Pacific Decadal Oscillation, warmer coastal sea surface temperatures occur during the positive Pacific Decadal Oscillation phase due to reduced coastal cold upwelling and increased net downward surface heat flux. Model results show that, relative to the background anthropogenic global warming, the positive Pacific Decadal Oscillation in the period 2013–2022 prolongs marine heatwaves duration by up to 43% and acts to increase marine heatwaves annual frequency by up to 32% off the Northeast Pacific coast.
more »
« less
- Award ID(s):
- 2237743
- PAR ID:
- 10500422
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract During 2013–16 and 2018–22, marine heatwaves (MHWs) occurred in the North Pacific, exhibiting similar extensive coverage, lengthy duration, and significant intensity but with different warming centers. The warming center of the 2013–16 event was in the Gulf of Alaska (GOA), while the 2018–22 event had warming centers in both the GOA and the coast of Japan (COJ). Our observational analysis indicates that these two events can be considered as two MHW variants induced by a basinwide MHW conditioning mode in the North Pacific. Both variants were driven thermodynamically by atmospheric wave trains propagating from the tropical Pacific to the North Pacific, within the conditioning mode. The origin and propagating path of these wave trains play a crucial role in determining the specific type of MHW variant. When a stronger wave train originates from the tropical central (western) Pacific, it leads to the GOA (COJ) variant. The cross-basin nature of the wave trains enables the two MHW variants to be accompanied by a tripolar pattern of sea surface temperature anomalies in the North Atlantic but with opposite phases. The association of these two MHW variants with the Atlantic Ocean also manifests in the decadal variations of their occurrence. Both variants tend to occur more frequently during the positive phase of the Atlantic multidecadal oscillation but less so during the negative phase. This study underscores the importance of cross-basin associations between the North Pacific and North Atlantic in shaping the dynamics of North Pacific MHWs.more » « less
-
Research cruises were conducted to sample the invertebrate community along the shelf off the central coast of Oregon from 2010 to 2018. A large marine heatwave (MHW) hit the northeast Pacific in fall 2014 and persisted locally through 2015. Here, we assessed the caloric content changes of Crangon alaskensis (a common sandy shrimp) before, during, and after the 2014–2015 MHW. We found significant reductions in the caloric density of shelf populations of C. alaskensis during summer 2015. Oceanographic indices like the Biologically Effective Upwelling Transport Index (BEUTI) and the Pacific Decadal Oscillation (PDO) had greater predictive power for caloric density and biomass than in situ conditions, although bottom temperature and dissolved oxygen were also significantly correlated with caloric density. Caloric density of C. alaskensis was highest in 2018, indicating favorable conditions after the intense MHW of 2014–2015 allowed the caloric density to rebound.more » « less
-
Abstract Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010–2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.more » « less
-
Abstract Recent studies demonstrated the existence of a conspicuous atmospheric combination mode (C-mode) originating from nonlinear interactions between El Niño–Southern Oscillation (ENSO) and the Pacific warm pool annual cycle (AC). Here we find that the C-mode exhibits prominent decadal amplitude variations during the ENSO decaying boreal spring season. It is revealed that the Atlantic multidecadal oscillation (AMO) can largely explain this waxing and waning in amplitude. A robust positive correlation between ENSO and the C-mode is detected during a negative AMO phase but not during a positive phase. Similar results can also be found in the relationship of ENSO with 1) the western North Pacific (WNP) anticyclone and 2) spring precipitation over southern China, both of which are closely associated with the C-mode. We suggest that ENSO property changes due to an AMO modulation play a crucial role in determining these decadal shifts. During a positive AMO phase, ENSO events are distinctly weaker than those in an AMO negative phase. In addition, El Niño events concurrent with a positive AMO phase tend to exhibit a westward-shifted sea surface temperature (SST) anomaly pattern. These SST characteristics during the positive AMO phase are both not conducive to the development of the meridionally asymmetric C-mode atmospheric circulation pattern and thus reduce the ENSO/C-mode correlation on decadal time scales. These observations can be realistically reproduced by a coupled general circulation model (CGCM) experiment in which North Atlantic SSTs are nudged to reproduce a 50-yr sinusoidally varying AMO evolution. Our conclusion carries important implications for understanding seasonally modulated ENSO dynamics and multiscale climate impacts over East Asia.more » « less