Abstract Species across the planet are shifting or expanding their ranges because of climate change. These are climate migrants. Although climate migrants are well documented, their impacts on recipient ecosystems are not. Climate migrants that are also ecosystem engineers (species that modify or create habitats) will likely have profound effects on ecosystems. The Atlantic marsh fiddler crab,Minuca pugnax, is a burrowing crab that recently expanded its range into the northeastern United States. In its historical range,M. pugnaxenhances the aboveground growth of the cordgrassSpartina alterniflora, a plant critical to marsh persistence. In a control‐impact study, however, we found thatSpartinaaboveground biomass was 40% lower whenM. pugnaxwas present. Thus, the positive effect ofM. pugnaxonSpartinaaboveground biomass flipped to a negative one in its expanded range.Spartinabelowground biomass was also 30% lower on average when crabs were present, a finding consistent with what is seen in the historical range. These impacts onSpartinaare likely due to burrowing byM. pugnax.Benthic microalgae was, on average, 45% lower when crabs were present. Fiddler crabs eat benthic microalgae, and these results suggest that fiddler crabs can control algal biomass via grazing. Because fiddler crabs reduced the biomass of foundational primary producers in its expanded range, our results imply thatM. pugnaxcan influence other saltmarsh functions such as carbon storage and accretion as they expand north. Most strikingly, our results suggest that as species expand or shift their range with climate change, not only can they have profound impacts in their new ranges but those impacts can be the inverse of what is seen in their historical ranges.
more »
« less
Benthic Microalgal Community Structure, Primary Productivity, and Fiddler Crab (Leptuca pugilator) Grazing in an Estuarine Salt Panne
Salt pannes are marsh features in the supratidal zone that are devoid of macrophytic vegetation. Although these habitats appear barren, benthic microalgae (BMA) inhabit the sediments and are potentially important primary producers. In addition, salt pannes are habitats for dense accumulations of sand fiddler crabs (Leptuca pugilator; Bosc 1802). The purpose of this study was to determine the temporal changes in BMA biomass, community composition, and net primary productivity (NPP) for a supratidal salt panne and quantify sand fiddler crab grazing on BMA. The impact of crab grazing on BMA abundance in surface sediments was determined by measuring chl a concentrations in ungrazed and grazed sediments. BMA biomass peaked to a high of 16 µg chl a g sediment-1 in June and July, suggesting growth in the spring followed by a small decline in the warmer summer months. The BMA community was primarily composed of benthic diatoms, with lesser amounts of cyanobacteria. NPP increased to a median of 0.51 mmol O2 m-2 h-1 (6.12 mg C m-2 h-1) in July. In comparison with other BMA habitats in this estuary, NPP and biomass for salt pannes was lower than the other 5 habitat types (tall and short Spartina, intertidal mud and sandflats, phytoplankton, and submerged sediments). Sand fiddler crabs do not appear to consume significant amounts of BMA during grazing in salt pannes. This first ever study of BMA NPP demonstrates that estuarine salt pannes are likely a small contributor to ecosystem NPP.
more »
« less
- Award ID(s):
- 2241830
- PAR ID:
- 10500436
- Editor(s):
- Estuaries and Coasts
- Publisher / Repository:
- Estuaries and Coasts
- Date Published:
- Journal Name:
- Estuaries and Coasts
- Volume:
- 46
- Issue:
- 5
- ISSN:
- 1559-2723
- Page Range / eLocation ID:
- 1316 to 1325
- Subject(s) / Keyword(s):
- microphytobenthos, diatoms, ChemTax, sandflat, South Carolina
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Predators regulate communities through top‐down control in many ecosystems. Because most studies of top‐down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short‐term and small‐scale experiments indicate that nektonic predators (e.g., blue crab, fish, terrapins) facilitate the foundational grass,Spartina alterniflora, by consuming herbivorous snails and crabs. To test both how nekton affect marsh processes when the entire animal community is present, and how prior results scale over time, we conducted a 3‐year nekton exclusion experiment in a Georgia salt marsh using replicated 19.6 m2plots. Our nekton exclusions increased densities of plant‐grazing snails and juvenile deposit‐feeding fiddler crab and, in Year 2, reduced predation on tethered juvenile snails, indicating that nektonic predators control these key macroinvertebrates. However, in Year 3, densities of mesopredatory benthic mud crabs increased threefold in nekton exclusions, erasing the tethered snails' predation refuge. Nekton exclusion had no effect onSpartinabiomass, likely because the observed mesopredator release suppressed grazing snail densities and elevated densities of fiddler crabs, whose burrowing alleviates soil stresses. Structural equation modeling supported the hypotheses that nektonic predators and mesopredators control invertebrate communities, with nektonic predators having stronger total effects onSpartinathan mud crabs by controlling densities of species that both suppress (grazers) and facilitate (fiddler crabs) plant growth. These findings highlight that salt marshes can be resilient to multiyear reductions in nektonic predators if mesopredators are present and that multiple pathways of trophic control manifest in different ways over time to mediate community dynamics. These results highlight that larger scale and longer‐term experiments can illuminate community dynamics not previously understood, even in well‐studied ecosystems such as salt marshes.more » « less
-
null (Ed.)Abstract It is well known that species across the world are expanding or shifting their ranges because of climate change. Yet, we know little about their impact on the habitats they colonize. In an observational study, we examined the effect of the fiddler crab Minuca pugnax (Smith, 1870) on benthic microalgal biomass in salt marshes in its expanded range (northeastern Massachusetts, USA). We found that plots with M. pugnax had, on average, 74% lower diatom biomass and 77% lower cyanobacteria biomass than plots without M. pugnax. Our results indicate that this climate migrant can impact saltmarsh functioning by limiting benthic microalgal biomass.more » « less
-
Laruelle, Goulven G (Ed.)The blue crab (Callinectes sapidus) is ecologically and economically important in Chesapeake Bay. Nursery habitats, such as seagrass beds, disproportionately contribute individuals to the adult segment of populations. Salt marshes dominated by smooth cordgrassSpartina alternifloraare intertidal nursery habitats which may serve as a refuge from predation for juvenile blue crabs. However, the effects of various characteristics of salt marshes on nursery metrics, such as survival, have not been quantified. Comparisons of juvenile survival between salt marshes and other habitats often employ tethering to assess survival. Although experimental bias when tethering juvenile prey is well recognized, the potential for habitat-specific bias in salt marshes has not been experimentally tested. Using short-term mesocosm predation experiments, we tested if tethering in simulated salt marsh habitats produces a habitat-specific bias. Juvenile crabs were tethered or un-tethered and randomly allocated to mesocosms at varying simulated shoot densities and unstructured sand. Tethering reduced survival, and its effect was not habitat specific, irrespective of shoot density, as evidenced by a non-significant interaction effect between tethering treatment and habitat. Thus, tethering juvenile blue crabs in salt marsh habitat did not produce treatment-specific bias relative to unvegetated habitat across a range of shoot densities; survival of tethered and un-tethered crabs was positively related to shoot density. These findings indicate that tethering is a useful method for assessing survival in salt marshes, as with other nursery habitats including seagrass beds, algae and unstructured sand.more » « less
-
Anthropogenic increases in global temperatures and nutrient loads are expected to reduce juvenile blue crab (Callinectes sapidus) survival in the Chesapeake Bay. These factors change habitat composition which can affect juvenile invertebrates and fishes that are dependent on these habitats. Eelgrass (Zostera marina) is declining due to rising water temperatures and increased nutrient loading, while widgeon grass (Ruppia maritima) can tolerate higher temperatures. An indoor mesocosm experiment was designed to test the suitability of Zostera and Ruppia as protective nursery habitats compared to sand. Artificial seagrass plots were placed in flow-through tanks. Juvenile blue crabs were tethered, and adult blue crabs and striped burrfish were introduced as predators in order to estimate juvenile crab survival in different substrates. Survival analysis revealed that Zostera provides more protection for juvenile crabs than sand. There was no significant difference between Ruppia and sand, and between Zostera and Ruppia in providing juvenile protection. This suggests juvenile survival may decrease in the future with Zostera loss and that stricter restrictions on the blue crab fishery in the Chesapeake Bay and mid-Atlantic region would be required to maintain healthy crab populations.more » « less
An official website of the United States government

