skip to main content


Title: Evaporation-Driven Cellular Patterns in Confined Hyperelastic Hydrogels
When a hyperelastic hydrogel confined between two parallel glass plates begins to dry from a lateral boundary, the volume lost by evaporation is accommodated by an inward displacement of the air-hydrogel interface that induces an elastic deformation of the hydrogel. Once a critical front displacement is reached, we observe intermittent fracture events initiated by a geometric instability resulting in localized bursts at the interface. These bursts relax the stresses and irreversibly form air cavities that lead to cellular networks. We show that the spatial extent of the strain field prior to a burst, influenced by the air-hydrogel interfacial tension and the confinement of the gel, determines the characteristic size of the cavities.  more » « less
Award ID(s):
2011754
PAR ID:
10500448
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review Letters
Volume:
131
Issue:
11
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Patterning of nanoparticles (NPs) via photochemical reduction within thermally responsive hydrogel films is demonstrated as a versatile platform for programming light‐driven shape morphing and materials assembly. Responsive hydrogel disks, containing patterned metal NPs, form characteristic wrinkled structures when illuminated at an air/water interface. The resulting distortion of the three‐phase (air/water/hydrogel) contact lines induces capillary interactions between two or more disks, which are either attractive or repulsive depending on the selected pattern of light. By programming the shapes of the NP‐rich regions, as well as of the hydrogel objects themselves, the number and location of attractive interactions are specified, and the assembly geometry is controlled. Remarkably, appropriately patterned illumination enables sustained rotation and motion of the hydrogel disks. Overall, these results offer insight into a wide variety of shape‐programmable materials and capillary assemblies, simply by controlling the NP patterns and illumination of these soft materials.

     
    more » « less
  2. Micron-scale barcode particles enable labelling of small objects. Here, we demonstrate high-throughput barcode fabrication inside a microfluidic chip that can embed multiple, dye-doped high quality-factor whispering gallery mode cavities inside aqueous droplets at kilohertz rates. These droplets are then cured to form polyacrylamide hydrogel beads as small as 30 μm in diameter. Optical resonance spectra of the embedded cavities provide the hydrogels with unique barcodes with their diversity combinatorically scaled with the number of embedded cavities. Using 3 cavities per hydrogel, we obtain approximately one million uniquely identifiable, optically readable barcode microparticles.

     
    more » « less
  3. Fluid viscosity proportional to pressure drop in a capillary (L) was reflected by the air–fluid interface displacement (ΔL) to enclosed air.

     
    more » « less
  4. This article presents a sensor for detecting the distribution of forces on a surface. The device with nine buttons consisted of an elastomer-based layer as a touch interface resting on a substrate of patterned metallized paper. The elastomer-based layer included a three-by-three array of deformable, hemispherical elements/reliefs, facing down toward an array of interdigitated capacitive sensing units on patterned metallized paper. Each hemispherical element is 20 mm in diameter and 8 mm in height. When a user applied pressure to the elastomer-based layer, the contact area between the hemispherical elements and the interdigitated capacitive sensing units increased with the deformation of the hemispherical elements. To enhance the sensitivity of the sensors, embedded particles of hydrogel in the elastomer-based layer increased the measured electrical responses. The measured capacitance increased because the effective dielectric permittivity of the hydrogel was greater than that of air. Electromechanical characterization verified that the hydrogel-filled elastomer was more sensitive to force at a low range of loads (23.4 pF/N) than elastomer alone without embedded hydrogel (3.4 pF/N), as the hydrogel reduced the effective elastic modulus of the composite material by a factor of seven. A simple demonstration suggests that the force-sensing array has the potential to contribute to wearable and soft robotic devices.

     
    more » « less
  5. Abstract

    Glioblastoma (GBM) is the most common and malignant type of primary brain tumor. Even after surgery and chemoradiotherapy, residual GBM cells can infiltrate the healthy brain parenchyma to form secondary tumors. To mitigate GBM recurrence, we recently developed an injectable hydrogel that can be crosslinked in the resection cavity to attract, collect, and ablate residual GBM cells. We previously optimized a thiol-Michael addition hydrogel for physical, chemical, and biological compatibility with the GBM microenvironment and demonstrated CXCL12-mediated chemotaxis can attract and entrap GBM cells into this hydrogel. In this study, we synthesize hydrogels under conditions mimicking GBM resection cavities and assess feasibility of histotripsy to ablate hydrogel-encapsulated cells. The results showed the hydrogel synthesis was bio-orthogonal, not shear-thinning, and can be scaled up for injection into GBM resection mimicsinvitro. Experiments also demonstrated ultrasound imaging can distinguish the synthetic hydrogel from healthy porcine brain tissue. Finally, a 500 kHz transducer applied focused ultrasound treatment to the synthetic hydrogels, with results demonstrating precise histotripsy bubble clouds could be sustained in order to uniformly ablate red blood cells encapsulated by the hydrogel for homogeneous, mechanical fractionation of the entrapped cells. Overall, this hydrogel is a promising platform for biomaterials-based GBM treatment.

     
    more » « less