Abstract Quantum networks describe communication networks that are based on quantum entanglement. A concurrence percolation theory has been recently developed to determine the required entanglement to enable communication between two distant stations in an arbitrary quantum network. Unfortunately, concurrence percolation has been calculated only for very small networks or large networks without loops. Here, we develop a set of mathematical tools for approximating the concurrence percolation threshold for unprecedented large-scale quantum networks by estimating the path-length distribution, under the assumption that all paths between a given pair of nodes have no overlap. We show that our approximate method agrees closely with analytical results from concurrence percolation theory. The numerical results we present include 2D square lattices of 2002nodes and complex networks of up to 104nodes. The entanglement percolation threshold of a quantum network is a crucial parameter for constructing a real-world communication network based on entanglement, and our method offers a significant speed-up for the intensive computations involved.
more »
« less
Percolation Theories for Quantum Networks
Quantum networks have experienced rapid advancements in both theoretical and experimental domains over the last decade, making it increasingly important to understand their large-scale features from the viewpoint of statistical physics. This review paper discusses a fundamental question: how can entanglement be effectively and indirectly (e.g., through intermediate nodes) distributed between distant nodes in an imperfect quantum network, where the connections are only partially entangled and subject to quantum noise? We survey recent studies addressing this issue by drawing exact or approximate mappings to percolation theory, a branch of statistical physics centered on network connectivity. Notably, we show that the classical percolation frameworks do not uniquely define the network’s indirect connectivity. This realization leads to the emergence of an alternative theory called “concurrence percolation”, which uncovers a previously unrecognized quantum advantage that emerges at large scales, suggesting that quantum networks are more resilient than initially assumed within classical percolation contexts, offering refreshing insights into future quantum network design.
more »
« less
- Award ID(s):
- 2047488
- PAR ID:
- 10500478
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 25
- Issue:
- 11
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gov, Nir (Ed.)Actin networks are essential for living cells to move, reproduce, and sense their environments. The dynamic and rheological behavior of actin networks is modulated by actin-binding proteins such as α-actinin, Arp2/3, and myosin. There is experimental evidence that actin-binding proteins modulate the cooperation of myosin motors by connecting the actin network. In this work, we present an analytical mean field model, using the Flory-Stockmayer theory of gelation, to understand how different actin-binding proteins change the connectivity of the actin filaments as the networks are formed. We follow the kinetics of the networks and estimate the concentrations of actin-binding proteins that are needed to reach connectivity percolation as well as to reach rigidity percolation. We find that Arp2/3 increases the actomyosin connectivity in the network in a non-monotonic way. We also describe how changing the connectivity of actomyosin networks modulates the ability of motors to exert forces, leading to three possible phases of the networks with distinctive dynamical characteristics: a sol phase, a gel phase, and an active phase. Thus, changes in the concentration and activity of actin-binding proteins in cells lead to a phase transition of the actin network, allowing the cells to perform active contraction and change their rheological properties.more » « less
-
Abstract We investigate the ground states of spin models defined on networks that we imprint (e.g., non-complex random networks like Erdos–Renyi, or complex networks like Watts–Strogatz, and Barabasi–Albert), and their response to decohering processes which we model with network attacks. We quantify the complexity of these ground states, and their response to the attacks, by calculating distributions of network measures of an emergent network whose link weights are the pairwise mutual information between spins. We focus on attacks which projectively measure spins. We find that the emergent networks in the ground state do not satisfy the usual criteria for complexity, and their average properties are captured well by a single dimensionless parameter in the Hamiltonian. While the response of classical networks to attacks is well-studied, where classical complex networks are known to be more robust to random attacks than random networks, we find counter-intuitive results for our quantum networks. We find that the ground states for Hamiltonians defined on different classes of imprinted networks respond similarly to all our attacks, and the attacks rescale the average properties of the emergent network by a constant factor. Mean field theory explains these results for relatively dense networks, but we also find the simple rescaling behavior away from the regime of validity of mean field theory. Our calculations indicate that complex spin networks are not more robust to projective measurement attacks, and presumably also other quantum attacks, than non-complex spin networks, in contrast to the classical case. Understanding the response of the spin networks to decoherence and attacks will have applications in understanding the physics of open quantum systems, and in designing robust complex quantum systems—possibly even a robust quantum internet in the long run—that is maximally resistant to decoherence.more » « less
-
Abstract Compound failures occur when urban flooding coincides with traffic congestion, and their impact on network connectivity is poorly understood. Firstly, either three-dimensional road networks or the traffic on the roads has been considered, but not both. Secondly, we lack network science frameworks to consider compound failures in infrastructure networks. Here we present a network-theory-based framework that bridges this gap by considering compound structural, functional, and topological failures. We analyze high-resolution traffic data using network percolation theory to study the response of the transportation network in Harris County, Texas, US to Hurricane Harvey in 2017. We find that 2.2% of flood-induced compound failure may lead to a reduction in the size of the largest cluster where network connectivity exists, the giant component, 17.7%. We conclude that indirect effects, such as changes in traffic patterns, must be accounted for when assessing the impacts of flooding on transportation network connectivity and functioning.more » « less
-
The objective of this paper is to model and characterize the percolation dynamics in road networks during a major fluvial flooding event. First, a road system is modelled as planar graph, then, using the level of co-location interdependency with flood control infrastructure as a proxy to the flood vulnerability of the road networks, it estimated the extent of disruptions each neighborhood road network experienced during a flooding event. Second, percolation mechanism in the road network during the flood is captured by assigning different removal probabilities to nodes in road network according to a Bayesian rule. Finally, temporal changes in road network robustness were obtained for random and weighted-adjusted node-removal scenarios. The proposed method was applied to road flooding in a super neighborhood in Houston during hurricane Harvey. The result shows that, network percolation due to fluvial flooding, which is modelled with the proposed Bayes rule based node-removal scheme, causes the decrease in the road network connectivity at varying rate.more » « less