Abstract Robust quantification of predictive uncertainty is a critical addition needed for machine learning applied to weather and climate problems to improve the understanding of what is driving prediction sensitivity. Ensembles of machine learning models provide predictive uncertainty estimates in a conceptually simple way but require multiple models for training and prediction, increasing computational cost and latency. Parametric deep learning can estimate uncertainty with one model by predicting the parameters of a probability distribution but does not account for epistemic uncertainty. Evidential deep learning, a technique that extends parametric deep learning to higher-order distributions, can account for both aleatoric and epistemic uncertainties with one model. This study compares the uncertainty derived from evidential neural networks to that obtained from ensembles. Through applications of the classification of winter precipitation type and regression of surface-layer fluxes, we show evidential deep learning models attaining predictive accuracy rivaling standard methods while robustly quantifying both sources of uncertainty. We evaluate the uncertainty in terms of how well the predictions are calibrated and how well the uncertainty correlates with prediction error. Analyses of uncertainty in the context of the inputs reveal sensitivities to underlying meteorological processes, facilitating interpretation of the models. The conceptual simplicity, interpretability, and computational efficiency of evidential neural networks make them highly extensible, offering a promising approach for reliable and practical uncertainty quantification in Earth system science modeling. To encourage broader adoption of evidential deep learning, we have developed a new Python package, Machine Integration and Learning for Earth Systems (MILES) group Generalized Uncertainty for Earth System Science (GUESS) (MILES-GUESS) (https://github.com/ai2es/miles-guess), that enables users to train and evaluate both evidential and ensemble deep learning. Significance StatementThis study demonstrates a new technique, evidential deep learning, for robust and computationally efficient uncertainty quantification in modeling the Earth system. The method integrates probabilistic principles into deep neural networks, enabling the estimation of both aleatoric uncertainty from noisy data and epistemic uncertainty from model limitations using a single model. Our analyses reveal how decomposing these uncertainties provides valuable insights into reliability, accuracy, and model shortcomings. We show that the approach can rival standard methods in classification and regression tasks within atmospheric science while offering practical advantages such as computational efficiency. With further advances, evidential networks have the potential to enhance risk assessment and decision-making across meteorology by improving uncertainty quantification, a longstanding challenge. This work establishes a strong foundation and motivation for the broader adoption of evidential learning, where properly quantifying uncertainties is critical yet lacking.
more »
« less
Fast uncertainty estimates in deep learning interatomic potentials
Deep learning has emerged as a promising paradigm to give access to highly accurate predictions of molecular and material properties. A common short-coming shared by current approaches, however, is that neural networks only give point estimates of their predictions and do not come with predictive uncertainties associated with these estimates. Existing uncertainty quantification efforts have primarily leveraged the standard deviation of predictions across an ensemble of independently trained neural networks. This incurs a large computational overhead in both training and prediction, resulting in order-of-magnitude more expensive predictions. Here, we propose a method to estimate the predictive uncertainty based on a single neural network without the need for an ensemble. This allows us to obtain uncertainty estimates with virtually no additional computational overhead over standard training and inference. We demonstrate that the quality of the uncertainty estimates matches those obtained from deep ensembles. We further examine the uncertainty estimates of our methods and deep ensembles across the configuration space of our test system and compare the uncertainties to the potential energy surface. Finally, we study the efficacy of the method in an active learning setting and find the results to match an ensemble-based strategy at order-of-magnitude reduced computational cost.
more »
« less
- Award ID(s):
- 2011754
- PAR ID:
- 10500491
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 158
- Issue:
- 16
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Parameter-space regularization in neural network optimization is a fundamental tool for improving generalization. However, standard parameter-space regularization methods make it challenging to encode explicit preferences about desired predictive functions into neural network training. In this work, we approach regularization in neural networks from a probabilistic perspective and show that by viewing parameter-space regularization as specifying an empirical prior distribution over the model parameters, we can derive a probabilistically well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training. This method—which we refer to as function-space empirical Bayes (FS-EB)—includes both parameter- and function-space regularization, is mathematically simple, easy to implement, and incurs only minimal computational overhead compared to standard regularization techniques. We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection, highly-calibrated predictive uncertainty estimates, successful task adaption from pre-trained models, and improved generalization under covariate shift.more » « less
-
na (Ed.)Ensemble Learning is an effective method for improving gen- eralization in machine learning. However, as state-of-the-art neural networks grow larger, the computational cost associ- ated with training several independent networks becomes ex- pensive. We introduce a fast, low-cost method for creating di- verse ensembles of neural networks without needing to train multiple models from scratch. We do this by first training a single parent network. We then create child networks by cloning the parent and dramatically pruning the parameters of each child to create an ensemble of members with unique and diverse topologies. We then briefly train each child net- work for a small number of epochs, which now converge significantly faster when compared to training from scratch. We explore various ways to maximize diversity in the child networks, including the use of anti-random pruning and one- cycle tuning. This diversity enables “Prune and Tune” ensem- bles to achieve results that are competitive with traditional ensembles at a fraction of the training cost. We benchmark our approach against state of the art low-cost ensemble meth- ods and display marked improvement in both accuracy and uncertainty estimation on CIFAR-10 and CIFAR-100.more » « less
-
NA (Ed.)Ensemble Learning is an effective method for improving gen- eralization in machine learning. However, as state-of-the-art neural networks grow larger, the computational cost associ- ated with training several independent networks becomes ex- pensive. We introduce a fast, low-cost method for creating di- verse ensembles of neural networks without needing to train multiple models from scratch. We do this by first training a single parent network. We then create child networks by cloning the parent and dramatically pruning the parameters of each child to create an ensemble of members with unique and diverse topologies. We then briefly train each child net- work for a small number of epochs, which now converge significantly faster when compared to training from scratch. We explore various ways to maximize diversity in the child networks, including the use of anti-random pruning and one- cycle tuning. This diversity enables “Prune and Tune” ensem- bles to achieve results that are competitive with traditional ensembles at a fraction of the training cost. We benchmark our approach against state of the art low-cost ensemble meth- ods and display marked improvement in both accuracy and uncertainty estimation on CIFAR-10 and CIFAR-100.more » « less
-
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P. S.; Wortman Vaughan, J. (Ed.)Bootstrapping has been a primary tool for ensemble and uncertainty quantification in machine learning and statistics. However, due to its nature of multiple training and resampling, bootstrapping deep neural networks is computationally burdensome; hence it has difficulties in practical application to the uncertainty estimation and related tasks. To overcome this computational bottleneck, we propose a novel approach called Neural Bootstrapper (NeuBoots), which learns to generate bootstrapped neural networks through single model training. NeuBoots injects the bootstrap weights into the high-level feature layers of the backbone network and outputs the bootstrapped predictions of the target, without additional parameters and the repetitive computations from scratch. We apply NeuBoots to various machine learning tasks related to uncertainty quantification, including prediction calibrations in image classification and semantic segmentation, active learning, and detection of out-of-distribution samples. Our empirical results show that NeuBoots outperforms other bagging based methods under a much lower computational cost without losing the validity of bootstrapping.more » « less
An official website of the United States government

