Abstract Bioprinting is an emerging approach for fabricating cell‐laden 3D scaffolds via robotic deposition of cells and biomaterials into custom shapes and patterns to replicate complex tissue architectures. Bioprinting uses hydrogel solutions called bioinks as both cell carriers and structural components, requiring bioinks to be highly printable while providing a robust and cell‐friendly microenvironment. Unfortunately, conventional hydrogel bioinks have not been able to meet these requirements and are mechanically weak due to their heterogeneously crosslinked networks and lack of energy dissipation mechanisms. Advanced bioink designs using various methods of dissipating mechanical energy are aimed at developing next‐generation cellularized 3D scaffolds to mimic anatomical size, tissue architecture, and tissue‐specific functions. These next‐generation bioinks need to have high print fidelity and should provide a biocompatible microenvironment along with improved mechanical properties. To design these advanced bioink formulations, it is important to understand the structure–property–function relationships of hydrogel networks. By specifically leveraging biophysical and biochemical characteristics of hydrogel networks, high performance bioinks can be designed to control and direct cell functions. In this review article, current and emerging approaches in hydrogel design and bioink reinforcement techniques are critically evaluated. This bottom‐up perspective provides a materials‐centric approach to bioink design for 3D bioprinting. 
                        more » 
                        « less   
                    
                            
                            Tunable Conductive Hydrogel Scaffolds for Neural Cell Differentiation
                        
                    
    
            Abstract Multielectrode arrays would benefit from intimate engagement with neural cells, but typical arrays do not present a physical environment that mimics that of neural tissues. It is hypothesized that a porous, conductive hydrogel scaffold with appropriate mechanical and conductive properties could support neural cells in 3D, while tunable electrical and mechanical properties could modulate the growth and differentiation of the cellular networks. By incorporating carbon nanomaterials into an alginate hydrogel matrix, and then freeze‐drying the formulations, scaffolds which mimic neural tissue properties are formed. Neural progenitor cells (NPCs) incorporated in the scaffolds form neurite networks which span the material in 3D and differentiate into astrocytes and myelinating oligodendrocytes. Viscoelastic and more conductive scaffolds produce more dense neurite networks, with an increased percentage of astrocytes and higher myelination. Application of exogenous electrical stimulation to the scaffolds increases the percentage of astrocytes and the supporting cells localize differently with the surrounding neurons. The tunable biomaterial scaffolds can support neural cocultures for over 12 weeks, and enable a physiologically mimicking in vitro platform to study the formation of neuronal networks. As these materials have sufficient electrical properties to be used as electrodes in implantable arrays, they may allow for the creation of biohybrid neural interfaces and living electrodes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2011754
- PAR ID:
- 10500492
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Healthcare Materials
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2192-2640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Mechanically tunable hydrogels are attractive platforms for 3D cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, an alternative strategy based upon tuning the hydrophilicity of an elastin‐like protein (ELP) is presented. ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. It is hypothesized that increasing this transition temperature through bioconjugation with azide‐containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide‐modified ELPs are crosslinked into hydrogels with bicyclononyne‐modified hyaluronic acid (HA‐BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100–1000 Pa). Human mesenchymal stromal cells (hMSCs), human umbilical vein endothelial cells (HUVECs), and human neural progenitor cells (hNPCs) are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties is demonstrated. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness.more » « less
- 
            Abstract Shape-morphable electrode arrays can form 3D surfaces to conform to complex neural anatomy and provide consistent positioning needed for next-generation neural interfaces. Retinal prostheses need a curved interface to match the spherical eye and a coverage of several cm to restore peripheral vision. We fabricated a full-field array that can (1) cover a visual field of 57° based on electrode position and of 113° based on the substrate size; (2) fold to form a compact shape for implantation; (3) self-deploy into a curvature fitting the eye after implantation. The full-field array consists of multiple polymer layers, specifically, a sandwich structure of elastomer/polyimide-based-electrode/elastomer, coated on one side with hydrogel. Electrodeposition of high-surface-area platinum/iridium alloy significantly improved the electrical properties of the electrodes. Hydrogel over-coating reduced electrode performance, but the electrodes retained better properties than those without platinum/iridium. The full-field array was rolled into a compact shape and, once implanted into ex vivo pig eyes, restored to a 3D curved surface. The full-field retinal array provides significant coverage of the retina while allowing surgical implantation through an incision 33% of the final device diameter. The shape-changing material platform can be used with other neural interfaces that require conformability to complex neuroanatomy.more » « less
- 
            Serotonergic axons (fibers) have a ubiquitous distribution in vertebrate brains, where they form meshworks with well-defined, regionally-specific densities. In humans, perturbations of these densities have been associated with abnormal neural processes, including neuropsychiatric conditions. The self-organization of serotonergic meshworks depends on the cumulative behavior of many serotonergic axons, each one of which has a virtually unpredictable trajectory. In order to bridge the high stochasticity at the microscopic level and the regional stability at the mesoscopic level, we are developing tunable hydrogel systems that can support causal modeling of these processes. These same systems can support future restorative efforts in neural tissue because serotonergic axons are nearly unique in their ability to robustly regenerate in the adult brain. In the study, we extended our research in 2D-primary brainstem cultures (Hingorani et al., 2022) to 3D-hydrogels. Tunable hydrogel scaffolds can closely mimic the mechanical and biochemical properties of actual neural tissue in all three dimensions and are therefore qualitatively different from 2D-environments. However, the integration of these scaffolds with highly sensitive neurons poses unique challenges. As the first step in building a hydrogel-based platform for the bioengineering of serotonergic axons, we studied primary brainstem neurons in several commercially available hydrogel platforms. The viability and dynamics of serotonergic somata and neurites were analyzed at different days in vitro with immunocytochemistry and high-resolution confocal microscopy. In addition, live imaging of neuron growth cones was performed, and the observed dynamics was compared to our extensive database of holotomographic (refractive index-based) recordings in 2D-cultures. The progress and key problems will be discussed. This research was funded by NSF CRCNS (#1822517 and #2112862), NIMH (#MH117488), and the California NanoSystems Institute.more » « less
- 
            Boland, Thomas (Ed.)The conventional real-time screening in organs-on-chips is limited to optical tracking of pre-tagged cells and biological agents. This work introduces an efficient biofabrication protocol to integrate tunable hydrogel electrodes into 3D bioprinted-on-chips. We established our method of fabricating cell-laden hydrogel-based microfluidic chips through digital light processing-based 3D bioprinting. Our conductive ink includes poly-(3,4-ethylene-dioxythiophene)-polystyrene sulfonate (PEDOT: PSS) microparticles doped in polyethylene glycol diacrylate (PEGDA). We optimized the manufacturing process of PEDOT: PSS microparticles characterized our conductive ink for different 3D bioprinting parameters, geometries, and materials conditions. While the literature is limited to 0.5% w/v for PEDOT: PSS microparticle concentration, we increased their concentration to 5% w/v with superior biological responses. We measured the conductivity in the 3–15 m/m for a range of 0.5%–5% w/v microparticles, and we showed the effectiveness of 3D-printed electrodes for predicting cell responses when encapsulated in gelatin-methacryloyl (GelMA). Interestingly, a higher cellular activity was observed in the case of 5% w/v microparticles compared to 0.5% w/v microparticles. Electrochemical impedance spectroscopy measurements indicated significant differences in cell densities and spheroid sizes embedded in GelMA microtissues.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    