skip to main content


This content will become publicly available on January 1, 2025

Title: Vibrations and transitions across barrier of strained nanoribbons at finite temperature
Crystalline sheets (e.g., graphene and transition metal dichalcogenides) liberated from a substrate are a paradigm for materials at criticality, because flexural phonons can fluctuate into the third dimension. Although studies of static critical behaviors (e.g., the scale-dependent elastic constants) are plentiful, investigations of dynamics remain limited. Here, we use molecular dynamics to study the time dependence of the midpoint (the height center of mass) of doubly clamped nanoribbons, as prototypical graphene resonators, under a wide range of temperature and strain conditions. By treating the ribbon midpoint as a Brownian particle confined to a nonlinear potential (which assumes a double-well shape beyond the buckling transition), we formulate an effective theory describing the ribbon's transition rate across the two wells and its oscillations inside a given well. We find that, for nanoribbbons compressed above the Euler buckling point and thermalized above a temperature at which the nonlinear effects due to thermal fluctuations become significant, the exponential term (the ratio between energy barrier and temperature) depends only on the geometry but not the temperature, unlike the usual Arrhenius behavior. Moreover, we find that the natural oscillation time for small strain shows a nontrivial scaling τ o ∼ L z 0 T − η / 4 , with L 0 being the ribbon length, z = 2 − η / 2 being the dynamic critical exponent, η = 0.8 being the scaling exponent describing scale-dependent elastic constants, and T being the temperature. These unusual scale- and temperature-dependent dynamics thus exhibit dynamic criticality and could be exploited in the development of graphene-based nanoactuators.  more » « less
Award ID(s):
2011754
NSF-PAR ID:
10500514
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review Materials
Volume:
8
Issue:
1
ISSN:
2475-9953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding thin sheets, ranging from the macro to the nanoscale, can allow control of mechanical properties such as deformability. Out-of-plane buckling due to in-plane compression can be a key feature in designing new materials. While thin-plate theory can predict critical buckling thresholds for thin frames and nanoribbons at very low temperatures, a unifying framework to describe the e↵ects of thermal fluctuations on buckling at more elevated temperatures presents subtle difficulties. We develop and test a theoretical approach that includes both an in-plane compression and an outof- plane perturbing field to describe the mechanics of thermalised ribbons above and below the buckling transition. We show that, once the elastic constants are renormalised to take into account the ribbon’s width (in units of the thermal length scale), we can map the physics onto a mean-field treatment of buckling, provided the length is short compared to a ribbon persistence length. Our theoretical predictions are checked by extensive molecular dynamics simulations of thin thermalised ribbons under axial compression. 
    more » « less
  2. The buckling of thin elastic sheets is a classic mechanical instability that occurs over a wide range of scales. In the extreme limit of atomically thin membranes like graphene, thermal fluctuations can dramatically modify such mechanical instabilities. We investigate here the delicate interplay of boundary conditions, nonlinear mechanics, and thermal fluctuations in controlling buckling of confined thin sheets under isotropic compression. We identify two inequivalent mechanical ensembles based on the boundaries at constant strain (isometric) or at constant stress (isotensional) conditions. Remarkably, in the isometric ensemble, boundary conditions induce a novel long-ranged nonlinear interaction between the local tilt of the surface at distant points. This interaction combined with a spontaneously generated thermal tension leads to a renormalization group description of two distinct universality classes for thermalized buckling, realizing a mechanical variant of Fisher-renormalized critical exponents. We formulate a complete scaling theory of buckling as an unusual phase transition with a size-dependent critical point, and we discuss experimental ramifications for the mechanical manipulation of ultrathin nanomaterials. 
    more » « less
  3. We present a formulation for investigating quench dynamics acrossquantum phase transitions in the presence of decoherence. We formulatedecoherent dynamics induced by continuous quantum non-demolitionmeasurements of the instantaneous Hamiltonian. We generalize thewell-studied universal Kibble-Zurek behavior for linear temporal driveacross the critical point. We identify a strong decoherence regimewherein the decoherence time is shorter than the standard correlationtime, which varies as the inverse gap above the groundstate. In thisregime, we find that the freeze-out time \bar{t}\sim\tau^{{2\nu z}/({1+2\nu z})} t - ∼ τ 2 ν z / ( 1 + 2 ν z ) for when the system falls out of equilibrium and the associatedfreeze-out length \bar{\xi}\sim\tau^{\nu/({1+2\nu z})} ξ ‾ ∼ τ ν / ( 1 + 2 ν z ) show power-law scaling with respect to the quench rate 1/\tau 1 / τ ,where the exponents depend on the correlation length exponent \nu ν and the dynamical exponent z z associated with the transition. The universal exponents differ fromthose of standard Kibble-Zurek scaling. We explicitly demonstrate thisscaling behavior in the instance of a topological transition in a Cherninsulator system. We show that the freeze-out time scale can be probedfrom the relaxation of the Hall conductivity. Furthermore, onintroducing disorder to break translational invariance, we demonstratehow quenching results in regions of imbalanced excitation densitycharacterized by an emergent length scale which also shows universalscaling. We perform numerical simulations to confirm our analyticalpredictions and corroborate the scaling arguments that we postulate asuniversal to a host of systems. 
    more » « less
  4. The objective of this paper is to demonstrate the flexure properties of ABS plastic in a 3D printed object as a process to enable embedded pressure sensing capabilities. Developing the potential for non-static 3D parts broadens the scope of the fused deposition modeling (FDM) process to include printing ‘smart’ objects that utilize intrinsic material properties to act as microphones, load sensors, accelerometers, etc. In order to demonstrate a strain-based pressure transducer, strain gauges were embedded either directly on top or in the middle of a flexible ABS diaphragm. Securing a strain gage directly on top of the diaphragm traced a reference pressure more closely than diaphragms with the strain gage embedded halfway into the diaphragm. To prevent temperature-related drift, an additional strain gage was suspended above the secured gage, inside the 3D printed cavity. The additional gage allowed for a half-bridge circuit in lieu of a quarter-bridge circuit, which minimized drift due to temperature change. The ABS diaphragm showed no significant signs of elastic hysteresis or nonlinear buckling. When sealed with 100% acetone, the diaphragm leaked ∼50x slower than as-printed sensors. After pressurizing and depressurizing the devices multiple times, they output pressure readouts that were consistent and repeatable for any given pressure within the operational range of 0 to 7psi. The repeatability of each of the final generation sensors indicates that ‘smart’ objects printed using an FDM process could be individually calibrated to make repeatable recordings. This work demonstrates a concept overlooked previous to now — FDM printed objects are not limited to static models, which lack dynamic motion of the part as an element of design. Altering FDM’s bottom-up process can allow for easily embedding sensing elements that result in printed objects which are functional on the mesoscale. 
    more » « less
  5. To better understand the temporal characteristics and the lifetime of fluctuations in stochastic processes in networks, we investigated diffusive persistence in various graphs. Global diffusive persistence is defined as the fraction of nodes for which the diffusive field at a site (or node) has not changed sign up to time t (or, in general, that the node remained active or inactive in discrete models). Here we investigate disordered and random networks and show that the behavior of the persistence depends on the topology of the network. In two-dimensional (2D) disordered networks, we find that above the percolation threshold diffusive persistence scales similarly as in the original 2D regular lattice, according to a power law P(t , L) ∼ t−θ with an exponent θ ~ 0.186, in the limit of large linear system size L. At the percolation threshold, however, the scaling exponent changes to θ ~ 0.141, as the result of the interplay of diffusive persistence and the underlying structural transition in the disordered lattice at the percolation threshold. Moreover, studying finite-size effects for 2D lattices at and above the percolation threshold, we find that at the percolation threshold, the long-time asymptotic value obeys a power law P(t , L) ∼ L−zθ with z ~ 2.86 instead of the value of z = 2 normally associated with finite-size effects on 2D regular lattices. In contrast, we observe that in random networks without a local regular structure, such as Erdos-Rényi networks, no simple power-law scaling behavior exists above the percolation threshold 
    more » « less