skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermalized buckling of isotropically compressed thin sheets
The buckling of thin elastic sheets is a classic mechanical instability that occurs over a wide range of scales. In the extreme limit of atomically thin membranes like graphene, thermal fluctuations can dramatically modify such mechanical instabilities. We investigate here the delicate interplay of boundary conditions, nonlinear mechanics, and thermal fluctuations in controlling buckling of confined thin sheets under isotropic compression. We identify two inequivalent mechanical ensembles based on the boundaries at constant strain (isometric) or at constant stress (isotensional) conditions. Remarkably, in the isometric ensemble, boundary conditions induce a novel long-ranged nonlinear interaction between the local tilt of the surface at distant points. This interaction combined with a spontaneously generated thermal tension leads to a renormalization group description of two distinct universality classes for thermalized buckling, realizing a mechanical variant of Fisher-renormalized critical exponents. We formulate a complete scaling theory of buckling as an unusual phase transition with a size-dependent critical point, and we discuss experimental ramifications for the mechanical manipulation of ultrathin nanomaterials.  more » « less
Award ID(s):
2011754
PAR ID:
10499966
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review E
Volume:
104
Issue:
5
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding thin sheets, ranging from the macro to the nanoscale, can allow control of mechanical properties such as deformability. Out-of-plane buckling due to in-plane compression can be a key feature in designing new materials. While thin-plate theory can predict critical buckling thresholds for thin frames and nanoribbons at very low temperatures, a unifying framework to describe the e↵ects of thermal fluctuations on buckling at more elevated temperatures presents subtle difficulties. We develop and test a theoretical approach that includes both an in-plane compression and an outof- plane perturbing field to describe the mechanics of thermalised ribbons above and below the buckling transition. We show that, once the elastic constants are renormalised to take into account the ribbon’s width (in units of the thermal length scale), we can map the physics onto a mean-field treatment of buckling, provided the length is short compared to a ribbon persistence length. Our theoretical predictions are checked by extensive molecular dynamics simulations of thin thermalised ribbons under axial compression. 
    more » « less
  2. The ability of biomolecules to exert forces on their surroundings or resist compression from the environment is essential in a variety of biologically relevant contexts. For filaments in the low-temperature limit and under a constant compressive force, Euler buckling theory predicts a sudden transition from a compressed state to a bent state in these slender rods. In this paper, we use a mean-field theory to show that if a semiflexible chain is compressed at a finite temperature with a fixed end-to-end distance (permitting fluctuations in the compressive forces), it exhibits a continuous phase transition to a buckled state at a critical level of compression. We determine a quantitatively accurate prediction of the transverse position distribution function of the midpoint of the chain that indicates this transition. We find that the mean compressive forces are non-monotonic as the extension of the filament varies, consistent with the observation that strongly buckled filaments are less able to bear an external load. We also find that for the fixed extension (isometric) ensemble, the buckling transition does not coincide with the local minimum of the mean force (in contrast to Euler buckling). We also show that the theory is highly sensitive to fluctuations in length in two dimensions and the buckling transition can still be accurately recovered by accounting for those fluctuations. These predictions may be useful in understanding the behavior of filamentous biomolecules compressed by fluctuating forces, relevant in a variety of biological contexts. 
    more » « less
  3. The resistance of thin-walled steel beams in fire is governed by a complex interaction between the buckling of the plates and the lateral-torsional buckling (LTB) of the member, combined with the temperature-induced reduction of steel properties. Besides, in many applications, steel beams are subjected to non-uniform thermal exposure which creates temperature gradients in the section. There is a lack of analytical design methods to capture the effects of temperature gradients on the structural response, which leads to overly conservative assumptions thwarting optimization efforts. This paper describes a study on the strength of thin-walled steel beams subjected to constant bending moment in the major-axis and thermal gradients through analytical and Machine Learning (ML) methods. A parametric heat transfer analysis is conducted to characterize the thermal gradients that develop under three-sided fire exposure. Nonlinear finite element simulations with shells are then used to generate the resistance dataset. Results show that the use of the Eurocode model with a uniform temperature taken as the hot flange temperature severely underestimate the moment strength with an R^2 of 0.61. The ML models, trained using physically defined features, are far superior to the Eurocode methods in predictive capacity. The ML-based models can be used to improve existing design methods for non-uniform temperature distributions. 
    more » « less
  4. Abstract Interface stress between structural materials and thin film coatings has a significant influence on the resonant frequency of microelectromechanical system (MEMS) resonators. In this work, the axial stress on different types of buckled bridge MEMS resonator structures is controlled through the solid‐to‐solid phase transition of a VO2thin film coating. The devices have identical dimensions, but different buckling orientations and profiles due to the combined effect of overetching and residual thermal stress mismatch. Thermal actuation is used to tune the resonant frequency of the device, but the changes in frequency are found to be dependent on the type of buckling for the device. Thermal actuation is achieved by applying an electrical current to integrated heaters, or by uniform substrate heating. Bidirectional tunability is found when substrate heating is used, while Joule heating shows a monotonic change in frequency. This phenomenon can be attributed to the transition in boundary conditions, where the turning points are indicated by the prominent changes in buckling amplitude. In addition, devices with opposite buckling orientations exhibit different tuning behaviors which can be explained by different bending moments induced by beam stress interface modification. 
    more » « less
  5. At high Reynolds number, the interaction between two vortex tubes leads to intense velocity gradients, which are at the heart of fluid turbulence. This vorticity amplification comes about through two different instability mechanisms of the initial vortex tubes, assumed anti-parallel and with a mirror plane of symmetry. At moderate Reynolds number, the tubes destabilize via a Crow instability, with the nonlinear development leading to strong flattening of the cores into thin sheets. These sheets then break down into filaments which can repeat the process. At higher Reynolds number, the instability proceeds via the elliptical instability, producing vortex tubes that are perpendicular to the original tube directions. In this work, we demonstrate that these same transition between Crow and Elliptical instability occurs at moderate Reynolds number when we vary the initial angle   between two straight vortex tubes. We demonstrate that when the angle between the two tubes is close to  =2, the interaction between tubes leads to the formation of thin vortex sheets. The subsequent breakdown of these sheets involves a twisting of the paired sheets, followed by the appearance of a localized cloud of small scale vortex structures. At smaller values of the angle   between the two tubes, the breakdown mechanism changes to an elliptic cascade-like mechanism. Whereas the interaction of two vortices depends on the initial condition, the rapid formation of fine-scales vortex structures appears to be a robust feature, possibly universal at very high Reynolds numbers. 
    more » « less