skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Steric modulation of CAACs controls orientation and ethenolysis performance
In this issue of Chem Catalysis, Sytniczuk, Kajetanowicz, and Grela report sterically tuned Cyclic(Alkyl)(Amino)Carbene (CAAC) ligands to protect the requisite Ru-methylidene ([Ru]=CH2) intermediate present during ethenolysis of renewable fatty acid methyl esters (FAME). Surprising structural characteristics of the Ru-CAAC complexes resulted in TON up to 740,000 and sub-ppm catalyst loadings.  more » « less
Award ID(s):
1900482
PAR ID:
10500730
Author(s) / Creator(s):
;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Chem Catalysis
Volume:
3
Issue:
9
ISSN:
2667-1093
Page Range / eLocation ID:
100764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IPr* (IPr* = 1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene) has emerged as a powerful highly hindered and sterically-flexible ligand platform for transition-metal catalysis. CAACs (CAAC = cyclic (al-kyl)(amino)carbenes) have gained major attention as strongly electron-rich carbon analogues of NHCs (NHC = N-heterocyclic carbene) with broad applications in both industry and academia. Herein, we report a merger of CAAC ligands with highly-hindered IPr*. The efficient synthesis, electronic characterization and application in model Cu-catalyzed hydroboration of alkynes is described. The ligands are strongly electron-rich, bulky and flexible around the N-Ar wingtip. The availability of various IPr* and CAAC templates offers a significant potential to expand the existing arsenal of NHC ligands to electron-rich bulky architectures with critical applications in metal stabilization and catalysis. 
    more » « less
  2. The photophysical properties of several Cu( i ) complexes coordinated with cyclic (alkyl)(amino)carbene (CAAC) ligands were examined. All the compounds were found to be phosphorescent, regardless of whether they are 2-, 3- or 4-coordinated. Aggregate and excimer emission were observed from 2-coordinate CAAC–CuCl derivatives in methylcyclohexane solution. Emission from the complex 4-coordinated with a trispyrazolylborate ligand is red-shifted with respect to both the chloro-derivative and an analogous complex with an NHC ligand. 
    more » « less
  3. Abstract Cyclic (Alkyl)(Amino)Carbenes (CAACs) have become forceful ligands for gold due to their ability to form very strong ligand‐metal bonds. Inspired by the success of Auranofin and other gold complexes as antitumor agents, we have studied the cytotoxicity of bis‐ and mono‐CAAC‐gold complexes on different cancer cell lines: HeLa (cervical cancer), A549 (lung cancer), HT1080 (fibrosarcoma) and Caov‐3 (ovarian cancer). Further investigations aimed at elucidating their mechanism of action are described. This includes quantification of affinities for TrxR, evaluation of their bioavailability and determination of associated cell death process. Moreover, Transmission Electron Microscopy (TEM) was used to study morphological changes upon exposure. Noticeably, a significant reduction in non‐specific binding to serum proteins was observed with CAAC complexes when compared to Auranofin. These results confirm the potential of CAAC‐gold complexes in biological environments, which may result in more specific drug‐target interactions and decreased side effects. 
    more » « less
  4. Abstract The substituent effect on the magnitude of the circularly polarized luminescence (CPL) ofMentCAAC‐Cu‐X (X=F, Cl, Br, I, BH4, B3H8; CAAC=cyclic (alkyl)(amino)carbenes) complexes is experimentally investigated. This study examines seven pairs of enantiomeric complexes with small anionic substituents (halides, borohydrides, hydride). The complexes are fully characterized, including single crystal X‐ray diffraction studies, and chiroptical measurements show that small covalent anions induce a larger CPL magnitude. These results demonstrate that the magnitude of the CPL can be manipulated without making any modifications to the chiral ligand. 
    more » « less
  5. Abstract Regioselective hydrofunctionalization of alkynes represents a straightforward route to access alkenyl boronate and silane building blocks. In previously reported catalytic systems, high selectivity is achieved with a limited scope of substrates and/or reagents, with general solutions lacking. Herein, we describe a selective copper‐catalyzed Markovnikov hydrofunctionalization of terminal alkynes that is facilitated by strongly donating cyclic (alkyl)(amino)carbene (CAAC) ligands. Using this method, both alkyl‐ and aryl‐substituted alkynes are coupled with a variety of boryl and silyl reagents with high α‐selectivity. The reaction is scalable, and the products are versatile intermediates that can participate in various downstream transformations. Preliminary mechanistic experiments shed light on the role of CAAC ligands in this process. 
    more » « less