Abstract Uncertainty arising from climate change poses a central challenge to the long‐term performance of many engineered water systems. Water supply infrastructure projects can leverage different types of flexibility, in planning, design, or operations, to adapt infrastructure systems in response to climate change over time. Both flexible planning and design enable future capacity expansion if‐and‐when needed, with flexible design proactively incorporating physical design changes that enable retrofits. All three forms of flexibility have not previously been analyzed together to explicitly assess their relative value in mitigating cost and water supply reliability risk. In this paper, we propose a new framework to evaluate combinations of flexible planning, design, and operations. We develop a nested stochastic dynamic optimization approach that jointly optimizes dam development and operating policies under dynamic climate uncertainty. We demonstrate this approach on a reservoir project near Mombasa, Kenya. Our results find that flexible operations have the greatest potential to reduce costs. Flexible design and flexible planning can amplify the value of flexible operations under higher discounting scenarios and when initial infrastructure capacities are undersized. This approach provides insight on the climate change and techno‐economic conditions under which flexible planning, design, and operations can be best leveraged individually or in combination to reduce climate change uncertainty risks in water supply infrastructure projects.
more »
« less
Climate oscillation impacts on water supply augmentation planning
Climate oscillations ranging from years to decades drive precipitation variability in many river basins globally. As a result, many regions will require new water infrastructure investments to maintain reliable water supply. However, current adaptation approaches focus on long-term trends, preparing for average climate conditions at mid- or end-of-century. The impact of climate oscillations, which bring prolonged and variable but temporary dry periods, on water supply augmentation needs is unknown. Current approaches for theory development in nature-society systems are limited in their ability to realistically capture the impacts of climate oscillations on water supply. Here, we develop an approach to build middle-range theory on how common climate oscillations affect low-cost, reliable water supply augmentation strategies. We extract contrasting climate oscillation patterns across sub-Saharan Africa and study their impacts on a generic water supply system. Our approach integrates climate model projections, nonstationary signal processing, stochastic weather generation, and reinforcement learning–based advances in stochastic dynamic control. We find that longer climate oscillations often require greater water supply augmentation capacity but benefit more from dynamic approaches. Therefore, in settings with the adaptive capacity to revisit planning decisions frequently, longer climate oscillations do not require greater capacity. By building theory on the relationship between climate oscillations and least-cost reliable water supply augmentation, our findings can help planners target scarce resources and guide water technology and policy innovation. This approach can be used to support climate adaptation planning across large spatial scales in sectors impacted by climate variability.
more »
« less
- Award ID(s):
- 2207036
- PAR ID:
- 10500817
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 35
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Regional scale assessments of future chronic coastal hazard impacts are critical tools for adaptation planning under a changing climate. Probabilistic simulations of hazard impacts can improve these assessments by explicitly attempting to quantify uncertainty and by better simulating dependence between complex multivariate drivers of hazards. In this study, probabilistic future timeseries of total water levels (TWLs) are generated from a stochastic climate emulator (TESLA; Anderson et al., 2019) for the Cascadia region, USA for use in a chronic hazard impact assessment. This assessment focuses on three hazard metrics: collision, overtopping, and beach safety, and also introduces a novel hotspot indicator to identify areas that may experience dramatic changes in hazard impacts compared to present day conditions. Results are presented for a subset of the Cascadia region (Rockaway Beach Littoral Cell, Oregon) to demonstrate the power of the probabilistic impact assessment approach. The results highlight how useful spatially varying, scenario-based hazard impacts assessments and hotspot indicators are for identifying which areas and types of hazards may require increased adaptation support. This approach enables us to piece apart the relative uncertainty of hazards as driven by SLR versus natural variability (caused by variation in climate, weather, and hydrodynamic drivers).more » « less
-
Long-term snowpack decline is among the best-understood impacts of climate change on water resources systems. This trend has been observed for decades and is projected to continue even in climate projections in which total runoff volumes do not change significantly. For basins in which snowpack has historically provided intra-annual water storage, snowpack decline creates several issues that may require adaptation to infrastructure, operations, or both. This study develops an approach to analyze vulnerabilities and adaptations specifically focused on the challenge of snowpack decline, using the northern California reservoir system as a case study. We first introduce an open-source daily time-step simulation model of this system, which is validated against historical observations of operations. Multiobjective vulnerabilities to snowpack decline are then examined using a set of downscaled climate scenarios to capture the physically based effects of rising temperatures. A statistical analysis shows that the primary impacts include water supply shortage and lower reservoir storage resulting from the seasonal shift in runoff timing. These challenges identified from the vulnerability assessment inform proposed adaptations to operations to maintain multiobjective performance across the ensemble of plausible future scenarios, which include other uncertain hydrologic changes. To adapt seasonal reservoir management without the cost of additional infrastructure, we specifically propose and test adaptations that parameterize the structure of existing operating policies: a dynamic flood control rule curve and revised snowpack-to-streamflow forecasting methods to improve seasonal runoff predictability given declining snowpack. These adaptations are shown to mitigate the majority of vulnerabilities caused by snowpack decline across the scenario ensemble, with remaining opportunities for improvement using formal policy search and dynamic adaptation techniques. The coupled approach to vulnerability assessment and adaptation is generalizable to other snowmelt-dominated water resources systems facing the loss of seasonal storage due to rising temperatures.more » « less
-
Abstract Rapid adaptation is necessary to maintain, let alone expand, access to reliable, safe drinking water in the face of climate change. Existing research focuses largely on the role, priorities, and incentives of local managers to pursue adaptation strategies while mostly neglecting the role of the broader public, despite the strong public support required to fund and implement many climate adaptation plans. In this paper, we interrogate the relationship between personal experiences of household water supply impacts from extreme weather events and hazard exposure with individual concern about future supply reliability among a statewide representative sample of California households. We find that more than one-third of Californians report experiencing impacts of climate change on their household water supplies and show that these reported impacts differently influence residents’ concern about future water supply reliability, depending on the type of event experienced. In contrast, residents’ concern about future water supplies is not significantly associated with hazard exposure. These findings emphasize the importance of local managers’ attending to not only how climate change is projected to affect their water resources, but how, and whether, residents perceive these risks. The critical role of personal experience in increasing concern highlights that post-extreme events with water supply impacts may offer a critical window to advance solutions. Managers should not assume, however, that all extreme events will promote concern in the same way or to the same degree.more » « less
-
null (Ed.)Abstract Climate change is anticipated to increase the frequency and intensity of droughts, with major impacts to ecosystems globally. Broad-scale assessments of vegetation responses to drought are needed to anticipate, manage, and potentially mitigate climate-change effects on ecosystems. We quantified the drought sensitivity of vegetation in the Pacific Northwest, USA, as the percent reduction in vegetation greenness under droughts relative to baseline moisture conditions. At a regional scale, shrub-steppe ecosystems—with drier climates and lower biomass—showed greater drought sensitivity than conifer forests. However, variability in drought sensitivity was considerable within biomes and within ecosystems and was mediated by landscape topography, climate, and soil characteristics. Drought sensitivity was generally greater in areas with higher elevation, drier climate, and greater soil bulk density. Ecosystems with high drought sensitivity included dry forests along ecotones to shrublands, Rocky Mountain subalpine forests, and cold upland sagebrush communities. In forests, valley bottoms and areas with low soil bulk density and high soil available water capacity showed reduced drought sensitivity, suggesting their potential as drought refugia. These regional-scale drought-sensitivity patterns discerned from remote sensing can complement plot-scale studies of plant physiological responses to drought to help inform climate-adaptation planning as drought conditions intensify.more » « less
An official website of the United States government

