skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EVOLVING IMPACTS OF CHRONIC COASTAL HAZARDS UNDER A CHANGING CLIMATE IN CASCADIA, USA
Regional scale assessments of future chronic coastal hazard impacts are critical tools for adaptation planning under a changing climate. Probabilistic simulations of hazard impacts can improve these assessments by explicitly attempting to quantify uncertainty and by better simulating dependence between complex multivariate drivers of hazards. In this study, probabilistic future timeseries of total water levels (TWLs) are generated from a stochastic climate emulator (TESLA; Anderson et al., 2019) for the Cascadia region, USA for use in a chronic hazard impact assessment. This assessment focuses on three hazard metrics: collision, overtopping, and beach safety, and also introduces a novel hotspot indicator to identify areas that may experience dramatic changes in hazard impacts compared to present day conditions. Results are presented for a subset of the Cascadia region (Rockaway Beach Littoral Cell, Oregon) to demonstrate the power of the probabilistic impact assessment approach. The results highlight how useful spatially varying, scenario-based hazard impacts assessments and hotspot indicators are for identifying which areas and types of hazards may require increased adaptation support. This approach enables us to piece apart the relative uncertainty of hazards as driven by SLR versus natural variability (caused by variation in climate, weather, and hydrodynamic drivers).  more » « less
Award ID(s):
2103713
PAR ID:
10521781
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
WORLD SCIENTIFIC
Date Published:
ISBN:
978-981-12-7989-8
Page Range / eLocation ID:
561 to 576
Format(s):
Medium: X
Location:
New Orleans, LA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. While there is high certainty that chronic coastal hazards like floodingand erosion, are increasing due to climate change induced sea-levelrise, there is high uncertainty surrounding the timing, intensity, andlocation of future hazard impacts. Assessments that quantify theseaspects of future hazards are critical for adaptation planning under achanging climate and can reveal new insights into the drivers of coastalhazards. In particular, probabilistic simulations of future hazardimpacts can improve these assessments by explicitly quantifyinguncertainty and by better simulating dependence structures between thecomplex multivariate drivers of hazards. In this study, a regional-scaleprobabilistic assessment of climate change induced coastal hazards isconducted for the Cascadia region, USA during the 21st century. Threeco-produced hazard proxies for beach safety, erosion, and flooding arequantified to identify areas of high hazard impacts and determine hazarduncertainty under three sea-level rise scenarios. A novel chroniccoastal hazard hotspot indicator is introduced that identifies areasthat may experience significant increases in hazard impacts compared topresent day conditions. We find that Southern Cascadia and NorthernWashington have larger hazard impacts and hazard uncertainty due totheir morphologic setting. Erosional hazards, relative to beach safetyand coastal flooding, will increase the most in Cascadia during the 21stcentury under all sea-level rise scenarios. Finally, we find that hazarduncertainty associated with wave and water level variability exceeds theuncertainty associated with sea-level-rise until the end of the century. 
    more » « less
  2. Abstract Ideally, probabilistic hazard assessments combine available knowledge about physical mechanisms of the hazard, data on past hazards, and any precursor information. Systematically assessing the probability of rare, yet catastrophic hazards adds a layer of difficulty due to limited observation data. Via computer models, one can exercise potentially dangerous scenarios that may not have happened in the past but are probabilistically consistent with the aleatoric nature of previous volcanic behavior in the record. Traditional Monte Carlo‐based methods to calculate such hazard probabilities suffer from two issues: they are computationally expensive, and they are static. In light of new information, newly available data, signs of unrest, and new probabilistic analysis describing uncertainty about scenarios the Monte Carlo calculation would need to be redone under the same computational constraints. Here we present an alternative approach utilizing statistical emulators that provide an efficient way to overcome the computational bottleneck of typical Monte Carlo approaches. Moreover, this approach is independent of an aleatoric scenario model and yet can be applied rapidly to any scenario model making it dynamic. We present and apply this emulator‐based approach to create multiple probabilistic hazard maps for inundation of pyroclastic density currents in the Long Valley Volcanic Region. Further, we illustrate how this approach enables an exploration of the impact of epistemic uncertainties on these probabilistic hazard forecasts. Particularly, we focus on the uncertainty of vent opening models and how that uncertainty both aleatoric and epistemic impacts the resulting probabilistic hazard maps of pyroclastic density current inundation. 
    more » « less
  3. Abstract We face a new era in the assessment of multiple natural hazards whose statistics are becoming alarmingly non‐stationary due to ubiquitous long‐term changes in climate. One particular case is tsunami hazard affected by climate‐change‐driven sea level rise (SLR). A traditional tsunami hazard assessment approach where SLR is omitted or included as a constant sea‐level offset in a probabilistic calculation may misrepresent the impacts of climate‐change. In this paper, a general method called non‐stationary probabilistic tsunami hazard assessment (nPTHA), is developed to include the long‐term time‐varying changes in mean sea level. The nPTHA is based on a non‐stationary Poisson process model, which takes advantage of the independence of arrivals within non‐overlapping time‐intervals to specify a temporally varying hazard mean recurrence rate, affected by SLR. The nPTHA is applied to the South China Sea (SCS) for tsunamis generated by earthquakes in the Manila Subduction Zone. The method provides unique and comprehensive results for inundation hazard, combining tsunami and SLR at a specific location over a given exposure time. The results show that in the SCS, SLR has a significant impact when its amplitude is comparable to that of tsunamis with moderate probability of exceedance. The SLR and its associated uncertainty produce an impact on nPTHA results comparable to that caused by the uncertainty in the earthquake recurrence model. These findings are site‐specific and must be analyzed for different regions. The proposed methodology, however, is sufficiently general to include other non‐stationary phenomena and can be exploited for other hazards affected by SLR. 
    more » « less
  4. Natural hazards such as hurricanes, floods, and wildfires cause devastating socio-economic impacts on communities. In South Florida, most of these hazards are becoming increasingly frequent and severe because of the warming climate, and changes in vulnerability and exposure, resulting in significant damage to infrastructure, homes, and businesses. To better understand the drivers of these impacts, we developed a bottom-up impact-based methodology that takes into account all relevant drivers for different types of hazards. We identify the specific drivers that co-occurred with socio-economic impacts and determine whether these extreme events were caused by single or multiple hydrometeorological drivers (i.e., compound events). We consider six types of natural hazards: hurricanes, severe storm/thunderstorms, floods, heatwaves, wildfire, and winter weather. Using historical, socio-economic loss data along with observations and reanalysis data for hydrometeorological drivers, we analyze how often these drivers contributed to the impacts of natural hazards in South Florida. We find that for each type of hazard, the relative importance of the drivers varies depending on the severity of the event. For example, wind speed is a key driver of the socio-economic impacts of hurricanes, while precipitation is a key driver of the impacts of flooding. We find that most of the high-impact events in South Florida were compound events, where multiple drivers contributed to the occurrences and impacts of the events. For example, more than 50% of the recorded flooding events were compound events and these contributed to 99% of total property damages and 98% of total crop damages associated with flooding in Miami-Dade County. Our results provide valuable insights into the drivers of natural hazard impacts in South Florida and can inform the development of more effective risk reduction strategies for improving the preparedness and resilience of the region against extreme events. Our bottom-up impact-based methodology can be applied to other regions and hazard types, allowing for more comprehensive and accurate assessments of the impacts of compound hazards. 
    more » « less
  5. null (Ed.)
    Abstract Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard “nowcasts” in near–real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty. 
    more » « less