skip to main content

Search for: All records

Award ID contains: 1942596

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Confining proteins in synthetic nanoscale spatial compartments has offered a cell-free avenue to understand enzyme structure–function relationships and complex cellular processes near the physiological conditions, an important branch of fundamental protein biophysics studies. Enzyme confinement has also provided advancement in biocatalysis by offering enhanced enzyme reusability, cost-efficiency, and substrate selectivity in certain cases for research and industrial applications. However, the primary research efforts in this area have been focused on the development of novel confinement materials and investigating protein adsorption/interaction with various surfaces, leaving a fundamental knowledge gap, namely, the lack of understanding of the confined enzymes (note that enzyme adsorption to or interactions with surfaces differs from enzyme confinement as the latter offers an enhanced extent of restriction to enzyme movement and/or conformational flexibility). In particular, there is limited understanding of enzymes' structure, dynamics, translocation (into biological pores), folding, and aggregation in extreme cases upon confinement, and how confinement properties such as the size, shape, and rigidity affect these details. The first barrier to bridge this gap is the difficulty in “penetrating” the “shielding” of the confinement walls experimentally; confinement could also lead to high heterogeneity and dynamics in the entrapped enzymes, challenging most protein-probing experimental techniques. The complexity is raised by the variety in the possible confinement environments that enzymes may encounter in nature or on lab benches, which can be categorized to rigid confinement with regular shapes, rigid restriction without regular shapes, and flexible/dynamic confinement which also introduces crowding effects. Thus, to bridge such a knowledge gap, it is critical to combine advanced materials and cutting-edge techniques to re-create the various confinement conditions and understand enzymes therein. We have spearheaded in this challenging area by creating various confinement conditions to restrict enzymes while exploring experimental techniques to understand enzyme behaviors upon confinement at the molecular/residue level. This review is to summarize our key findings on the molecular level details of enzymes confined in (i) rigid compartments with regular shapes based on pre-formed, mesoporous nanoparticles and Metal–Organic Frameworks/Covalent-Organic Frameworks (MOFs/COFs), (ii) rigid confinement with irregular crystal defects with shapes close to the outline of the confined enzymes via co-crystallization of enzymes with certain metal ions and ligands in the aqueous phase (biomineralization), and (iii) flexible, dynamic confinement created by protein-friendly polymeric materials and assemblies. Under each case, we will focus our discussion on (a) the way to load enzymes into the confined spaces, (b) the structural basis of the function and behavior of enzymes within each compartment environments, and (c) technical advances of our methodology to probe the needed structural information. The purposes are to depict the chemical physics details of enzymes at the challenging interface of natural molecules and synthetic compartment materials, guide the selection of enzyme confinement platforms for various applications, and generate excitement in the community on combining cutting-edge technologies and synthetic materials to better understand enzyme performance in biophysics, biocatalysis, and biomedical applications.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available August 25, 2024
  3. Free, publicly-accessible full text available August 9, 2024
  4. Unstructured confinement of enzyme is created in Metal–Organic Frameworks. The orientation and backbone dynamics of the trapped enzyme are determined, essential for biocatalyst design and fundamental enzyme studies under confinement.

    more » « less
  5. Farha, Omar (Ed.)
    Metal-Organic Frameworks (MOFs) are advanced platforms for enzyme immobilization. Enzymes can be entrapped via either diffusion (into pre-formed MOFs) or co-crystallization. Enzyme co-crystallization with specific metals/ligands in the aqueous phase, also known as biomineralization, minimizes the enzyme loss as compared to organic phase co-crystallization, removes the size limitation on enzymes and substrates, and can potentially broaden the application of enzyme@MOF composites. However, not all enzymes are stable/functional in the presence of excess metal ions and/or ligands currently available for co-crystallization. Furthermore, most current biomineralization-based MOFs have limited (acid-) pH stability, making it necessary to explore other metal-ligand combinations that can also immobilize enzymes. Here, we report our discovery on the combination of five metal ions and two ligands that can form biocomposites with two model enzymes differing in size and hydrophobicity in the aqueous phase under ambient conditions. Surprisingly, most of the formed composites are single- or multi- phase crystals even though the reaction phase is aqueous, with the rest as amorphous powders. All 20 enzyme@MOF composites showed good to excellent reusability, and were stable under weakly acidic pHs. The stability under weakly basic conditions depended on the selection of enzyme and metal-ligand combinations, yet for both enzymes, 3-4 MOFs offered decent stability under basic conditions. This work initiates the expansion of the current “library” of metal-ligand selection for encapsulating/biomineralizing large enzymes/enzyme clusters, leading to customized encapsulation of enzymes according to enzymes stability, functionality, and optimal pH. 
    more » « less
  6. null (Ed.)
    Protein transfer into nanoscale compartments is critical for many cellular/life processes, yet there are few reports on how compartment properties impact the protein orientation during a transfer. Such a knowledge gap limits a deeper understanding of the protein transfer mechanism, which could be bridged using nanoporous materials. Here, we use a mesoporous silica, a covalent organic framework, and a metal-organic framework with charged, hydrophobic, and neutral surfaces, respectively, to elucidate the impact of channel properties on the transfer of a model protein, lysozyme. Using site-directed spin labeling and time-resolved electron paramagnetic resonance spectroscopy, we reveal that the transfer can be a multi-step process depending on channel properties and depict the relative orientation changes of lysozyme upon transfer into each channel. To the best of our knowledge, this is the first structural insight into protein orientation upon transfer into different compartments, meaningful for the rational design of synthetic materials to host enzymes or mimic the cellular compartments. 
    more » « less
  7. null (Ed.)
    Enzyme encapsulation in metal-organic frameworks (MOFs)/covalent-organic frameworks (COFs) provides advancement in biocatalysis, yet the structural basis underlying the catalytic performance is challenging to probe. Here, we present an effective protocol to determine the orientation and dynamics of enzymes in MOFs/COFs using site-directed spin labeling and electron paramagnetic resonance spectroscopy. The protocol is demonstrated using lysozyme and can be generalized to other enzymes. 
    more » « less