In face of an increasing number of automotive cyber-physical threat scenarios, the issue of adversarial destabilization of the lateral motion of target vehicles through direct attacks on their steering systems has been extensively studied. A more subtle question is whether a cyberattacker can destabilize the target vehicle lateral motion through improper engagement of the vehicle brakes and/or anti-lock braking systems (ABS). Motivated by such a question, this paper investigates the impact of cyber-physical attacks that exploit the braking/ABS systems to adversely affect the lateral motion stability of the targeted vehicles. Using a hybrid physical/dynamic tire-road friction model, it is shown that if a braking system/ABS attacker manages to continuously vary the longitudinal slips of the wheels, they can violate the necessary conditions for asymptotic stability of the underlying linear time-varying (LTV) dynamics of the lateral motion. Furthermore, the minimal perturbations of the wheel longitudinal slips that result in lateral motion instability under fixed slip values are derived. Finally, a real-time algorithm for monitoring the lateral motion dynamics of vehicles against braking/ABS cyber-physical attacks is devised. This algorithm, which can be efficiently computed using the modest computational resources of automotive embedded processors, can be utilized along with other intrusion detection techniques to infer whether a vehicle braking system/ABS is experiencing a cyber-physical attack. Numerical simulations in the presence of realistic CAN bus delays, destabilizing slip value perturbations obtained from solving quadratic programs on an embedded ARM Cortex-M3 emulator, and side-wind gusts demonstrate the effectiveness of the proposed methodology.
more »
« less
Enhancing the Strength of Acrylonitrile–Butadiene–Styrene with Gas-Phase-Synthesized Graphene for Injection-Molding Applications
Increasing the strength-to-weight ratio of injection moldable polymers can benefit a broad range of applications, such as automobiles, aircraft, and consumer electronic devices. This paper demonstrates that incorporating miniscule quantities (0.1 wt %) of gas-phase-synthesized graphene into acrylonitrile–butadiene–styrene (ABS) can significantly increase the strength of injection-molded specimens by over 20%. The results transform our current understanding of the structure–property relationships of graphene-filled polymer-matrix nanocomposites because highly crumpled graphene sheets with nonfunctionalized surfaces and nanometer-scale lateral dimensions are shown to be more effective at strengthening ABS than flat graphene flakes with functionalized surfaces and micrometer-scale lateral dimensions.
more »
« less
- Award ID(s):
- 1943599
- PAR ID:
- 10500934
- Editor(s):
- Ling, Xing Y; Lee, T. Randall
- Publisher / Repository:
- ACS Applied Nano Materials
- Date Published:
- Journal Name:
- ACS Applied Nano Materials
- Volume:
- 7
- Issue:
- 5
- ISSN:
- 2574-0970
- Page Range / eLocation ID:
- 4653-4657
- Subject(s) / Keyword(s):
- Layers Nanocomposites Polymers Transmission electron microscopy Two dimensional materials
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The goal of this paper was to establish a metric, which we refer to as the resilience parameter, to evaluate the ability of a material to retain tensile strength after damage recovery for shape memory polymer (SMP) systems. In this work, three SMP blends created for the additive manufacturing process of fused filament fabrication (FFF) were characterized. The three polymer systems examined in this study were 50/50 by weight binary blends of the following constituents: (1) polylactic acid (PLA) and maleated styrene-ethylene-butylene-styrene (SEBS-g-MA); (2) acrylonitrile butadiene styrene (ABS) and SEBS-g-MA); and (3) PLA and thermoplastic polyurethane (TPU). The blends were melt compounded and specimens were fabricated by way of FFF and injection molding (IM). The effect of shape memory recovery from varying amounts of initial tensile deformation on the mechanical properties of each blend, in both additively manufactured and injection molded forms, was characterized in terms of the change in tensile strength vs. the amount of deformation the specimens recovered from. The findings of this research indicated a sensitivity to manufacturing method for the PLA/TPU blend, which showed an increase in strength with increasing deformation recovery for the injection molded samples, which indicates this blend had excellent resilience. The ABS/SEBS blend showed no change in strength with the amount of deformation recovery, indicating that this blend had good resilience. The PLA/SEBS showed a decrease in strength with an increasing amount of initial deformation, indicating that this blend had poor resilience. The premise behind the development of this parameter is to promote and aid the notion that increased use of shape memory and self-healing polymers could be a strategy for mitigating plastic waste in the environment.more » « less
-
Understanding protein adsorption behavior on rough and wrinkled surfaces is vital to applications including biosensors and flexible biomedical devices. Despite this, there is a dearth of study on protein interaction with regularly undulating surface topographies, particularly in regions of negative curvature. Here we report nanoscale adsorption behavior of immunoglobulin M (IgM) and immunoglobulin G (IgG) on wrinkled and crumpled surfaces via atomic force microscopy (AFM). Hydrophilic plasma treated poly(dimethylsiloxane) (PDMS) wrinkles with varying dimensions exhibit higher surface coverage of IgM on wrinkle peaks over valleys. Negative curvature in the valleys is determined to reduce protein surface coverage based both on an increase in geometric hindrance on concave surfaces, and reduced binding energy as calculated in coarse-grained molecular dynamics simulations. The smaller IgG molecule in contrast shows no observable effects on coverage from this degree of curvature. The same wrinkles with an overlayer of monolayer graphene show hydrophobic spreading and network formation, and inhomogeneous coverage across wrinkle peaks and valleys attributed to filament wetting and drying effects in the valleys. Additionally, adsorption onto uniaxial buckle delaminated graphene shows that when wrinkle features are on the length scale of the protein diameter, hydrophobic deformation and spreading do not occur and both IgM and IgG molecules retain their dimensions. These results demonstrate that undulating wrinkled surfaces characteristic of flexible substrates can have significant effects on protein surface distribution with potential implications for design of materials for biological applications.more » « less
-
Expandable graphite (EG) and few-layer graphene (FLG) have proven to be instrumental materials for various applications. The production of EG and FLG has been limited to batch processes using numerous intercalating agents, especially organic acids. In this study, a Taylor−Couette reactor (TCR) setup is used to expand and exfoliate natural graphite and produce a mixture of EG and FLG in aqueous solutions using an amphiphilic dispersant and a semiflexible stabilizer. Laminar Couette flow structure and high shear rates are achieved via the rotation of the outer cylinder while the inner cylinder is still, which circumvents vortex formation because of the suppression of centrifugal forces. Our results reveal that the level of expansion and exfoliation using an aqueous solution and a TCR is comparable to that using commercial EG (CEG) synthesized by intercalating sulfuric acid. More importantly, the resultant EG and FLG flakes are more structurally homogeneous than CEG, the ratio of FLG to EG increases with increasing shearing time, and the produced FLG sheets exhibit large lateral dimensions (>10 μm). The aqueous solutions of EG and FLG are wet-spun to produce ultralight fibers with a bulk density of 0.35 g/cm3. These graphene fibers exhibit a mechanical strength of 0.5 GPa without any modification or thermal treatment, which offers great potential in light-weight composite applications. KEYWORDS: graphene, graphite, Taylor−Couette, exfoliation, expansion, fibermore » « less
-
The concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g., pinholes, in two-dimensional materials can allow direct epitaxy from the substrate, which, in combination with lateral epitaxial overgrowth, could also form an epilayer. Here, we show several unique cases that can only be observed for remote epitaxy, distinguishable from other two-dimensional material-based epitaxy mechanisms. We first grow BaTiO3on patterned graphene to establish a condition for minimizing epitaxial lateral overgrowth. By observing entire nanometer-scale nuclei grown aligned to the substrate on pinhole-free graphene confirmed by high-resolution scanning transmission electron microscopy, we visually confirm that remote epitaxy is operative at the atomic scale. Macroscopically, we also show variations in the density of GaN microcrystal arrays that depend on the ionicity of substrates and the number of graphene layers.more » « less
An official website of the United States government

