skip to main content


Title: Vehicle Lateral Motion Dynamics Under Braking/ABS Cyber-Physical Attacks
In face of an increasing number of automotive cyber-physical threat scenarios, the issue of adversarial destabilization of the lateral motion of target vehicles through direct attacks on their steering systems has been extensively studied. A more subtle question is whether a cyberattacker can destabilize the target vehicle lateral motion through improper engagement of the vehicle brakes and/or anti-lock braking systems (ABS). Motivated by such a question, this paper investigates the impact of cyber-physical attacks that exploit the braking/ABS systems to adversely affect the lateral motion stability of the targeted vehicles. Using a hybrid physical/dynamic tire-road friction model, it is shown that if a braking system/ABS attacker manages to continuously vary the longitudinal slips of the wheels, they can violate the necessary conditions for asymptotic stability of the underlying linear time-varying (LTV) dynamics of the lateral motion. Furthermore, the minimal perturbations of the wheel longitudinal slips that result in lateral motion instability under fixed slip values are derived. Finally, a real-time algorithm for monitoring the lateral motion dynamics of vehicles against braking/ABS cyber-physical attacks is devised. This algorithm, which can be efficiently computed using the modest computational resources of automotive embedded processors, can be utilized along with other intrusion detection techniques to infer whether a vehicle braking system/ABS is experiencing a cyber-physical attack. Numerical simulations in the presence of realistic CAN bus delays, destabilizing slip value perturbations obtained from solving quadratic programs on an embedded ARM Cortex-M3 emulator, and side-wind gusts demonstrate the effectiveness of the proposed methodology.  more » « less
Award ID(s):
2035770
NSF-PAR ID:
10491964
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Information Forensics and Security
Volume:
18
ISSN:
1556-6013
Page Range / eLocation ID:
4100 to 4115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tarek Abdelzaher, Karl-Erik Arzen (Ed.)

    This article proposes a novel extension of the Simplex architecture with model switching and model learning to achieve safe velocity regulation of self-driving vehicles in dynamic and unforeseen environments. To guarantee the reliability of autonomous vehicles, an ℒ1adaptive controller that compensates for uncertainties and disturbances is employed by the Simplex architecture as a verified high-assurance controller (HAC) to tolerate concurrent software and physical failures. Meanwhile, the safe switching controller is incorporated into the HAC for safe velocity regulation in the dynamic (prepared) environments, through the integration of the traction control system and anti-lock braking system. Due to the high dependence of vehicle dynamics on the driving environments, the HAC leverages the finite-time model learning to timely learn and update the vehicle model for ℒ1adaptive controller, when any deviation from the safety envelope or the uncertainty measurement threshold occurs in the unforeseen driving environments. With the integration of ℒ1adaptive controller, safe switching controller and finite-time model learning, the vehicle’s angular and longitudinal velocities can asymptotically track the provided references in the dynamic and unforeseen driving environments, while the wheel slips are restricted to safety envelopes to prevent slipping and sliding. Finally, the effectiveness of the proposed Simplex architecture for safe velocity regulation is validated by the AutoRally platform.

     
    more » « less
  2. The safety-critical nature of vehicle steering is one of the main motivations for exploring the space of possible cyber-physical attacks against the steering systems of modern vehicles. This paper investigates the adversarial capabilities for destabilizing the interaction dynamics between human drivers and vehicle haptic shared control (HSC) steering systems. In contrast to the conventional robotics literature, where the main objective is to render the human-automation interaction dynamics stable by ensuring passivity, this paper takes the exact opposite route. In particular, to investigate the damaging capabilities of a successful cyber-physical attack, this paper demonstrates that an attacker who targets the HSC steering system can destabilize the interaction dynamics between the human driver and the vehicle HSC steering system through synthesis of time-varying impedance profiles. Specifically, it is shown that the adversary can utilize a properly designed non-passive and time-varying adversarial impedance target dynamics, which are fed with a linear combination of the human driver and the steering column torques. Using these target dynamics, it is possible for the adversary to generate in realtime a reference angular command for the driver input device and the directional control steering assembly of the vehicle. Furthermore, it is shown that the adversary can make the steering wheel and the vehicle steering column angular positions to follow the reference command generated by the time-varying impedance target dynamics using proper adaptive control strategies. Numerical simulations demonstrate the effectiveness of such time-varying impedance attacks, which result in a non-passive and inherently unstable interaction between the driver and the HSC steering system. 
    more » « less
  3. Motivated by ample evidence in the automotive cybersecurity literature that the car brake ECUs can be maliciously reprogrammed, it has been shown that an adversary who can directly control the frictional brake actuators can induce wheel lockup conditions despite having a limited knowledge of the tire-road interaction characteristics [1]. In this paper, we investigate the destabilizing effect of such wheel lockup attacks on the lateral motion stability of vehicles from a robust stability perspective. Furthermore, we propose a quadratic programming (QP) problem that the adversary can solve for finding the optimal destabilizing longitudinal slip reference values. 
    more » « less
  4. Motivated by ample evidence in the automotive cybersecurity literature that the car brake ECUs can be maliciously reprogrammed, it has been shown that an adversary who can directly control the frictional brake actuators can induce wheel lockup conditions despite having a limited knowledge of the tire-road interaction characteristics~\cite{mohammadi2021acc}. In this paper, we investigate the destabilizing effect of such wheel lockup attacks on the lateral motion stability of vehicles from a robust stability perspective. Furthermore, we propose a quadratic programming (QP) problem that the adversary can solve for finding the optimal destabilizing longitudinal slip reference values. 
    more » « less
  5. Modern vehicles can be thought of as complex distributed embedded systems that run a variety of automotive applications with real-time constraints. Recent advances in the automotive industry towards greater autonomy are driving vehicles to be increasingly connected with various external systems (e.g., roadside beacons, other vehicles), which makes emerging vehicles highly vulnerable to cyber-attacks. Additionally, the increased complexity of automotive applications and the in-vehicle networks results in poor attack visibility, which makes detecting such attacks particularly challenging in automotive systems. In this work, we present a novel anomaly detection framework called LATTE to detect cyber-attacks in Controller Area Network (CAN) based networks within automotive platforms. Our proposed LATTE framework uses a stacked Long Short Term Memory (LSTM) predictor network with novel attention mechanisms to learn the normal operating behavior at design time. Subsequently, a novel detection scheme (also trained at design time) is used to detect various cyber-attacks (as anomalies) at runtime. We evaluate our proposed LATTE framework under different automotive attack scenarios and present a detailed comparison with the best-known prior works in this area, to demonstrate the potential of our approach. 
    more » « less