skip to main content


This content will become publicly available on January 10, 2025

Title: Ligand-Mediated Mechanical Enhancement in Protein Complexes at Nano- and Macro-Scale
Protein self-assembly plays a vital role in a myriad of biological functions and in the construction of biomaterials. Although the physical association underlying these assemblies offers high specificity, the advantage often compromises the overall durability of protein complexes. To address this challenge, we propose a novel strategy that reinforces the molecular self-assembly of protein complexes mediated by their ligand. Known for their robust noncovalent interactions with biotin, streptavidin (SAv) tetramers are examined to understand how the ligand influences the mechanical strength of protein complexes at the nanoscale and macroscale, employing atomic force microscopy-based single-molecule force spectroscopy, rheology, and bioerosion analysis. Our study reveals that biotin binding enhances the mechanical strength of individual SAv tetramers at the nanoscale. This enhancement translates into improved shear elasticity and reduced bioerosion rates when SAv tetramers are utilized as cross-linking junctions within hydrogel. This approach, which enhances the mechanical strength of protein-based materials without compromising specificity, is expected to open new avenues for advanced biotechnological applications, including self-assembled, robust biomimetic scaffolds and soft robotics.  more » « less
Award ID(s):
2143126 2118357
NSF-PAR ID:
10501131
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
Volume:
16
Issue:
1
ISSN:
1944-8244
Page Range / eLocation ID:
272 to 280
Subject(s) / Keyword(s):
protein complex ligand artificial protein design molecular self-assembly nanomechanics hydrogel bulk mechanical properties
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. continuing emphasis. Polypropylene (PP) capillary-channeled polymer (C-CP) fiber columns are modified with the biotin- binding protein streptavidin (SAV) to capture biotinylated proteins. The loading characteristics of SAV on fiber supports were determined using breakthrough curves and frontal analysis. Based on adsorption data, a 3-min on-column loading at a flow rate of 0.5 mL min−1 (295.2 cm h−1) with a SAV feed concentration of 0.5 mg mL−1 produces a SAV loading capacity of 1.4 mg g−1 fiber. SAV has an incredibly high affinity for the small-molecule biotin (10−14 M), such that this binding relationship can be exploited by labeling a target protein with biotin via an Avi-tag. To evaluate the capture of the biotinylated proteins on the modified PP surface, the biotinylated versions of bovine serum albumin (b-BSA) and green fluorescent protein (b-GFP) were utilized as probe species. The loading buffer composition and flow rate were optimized towards protein capture. The non-ionic detergent Tween-20 was added to the deposition solutions to minimize non-specific binding. Values of 0.25–0.50% (v/v) Tween-20 in PBS exhibited better capture efficiency, while minimizing the non-specific binding for b-BSA and b-GFP, respectively. The C-CP fiber platform has the potential to provide a fast and low-cost method to capture targeted proteins for applications including protein purification or pull-down assays. 
    more » « less
  2.  
    more » « less
  3. Abstract

    Self-assembly of molecular building blocks into higher-order structures is exploited in living systems to create functional complexity and represents a powerful strategy for constructing new materials. As nanoscale building blocks, proteins offer unique advantages, including monodispersity and atomically tunable interactions. Yet, control of protein self-assembly has been limited compared to inorganic or polymeric nanoparticles, which lack such attributes. Here, we report modular self-assembly of an engineered protein into four physicochemically distinct, precisely patterned 2D crystals via control of four classes of interactions spanning Ångström to several-nanometer length scales. We relate the resulting structures to the underlying free-energy landscape by combining in-situ atomic force microscopy observations of assembly with thermodynamic analyses of protein-protein and -surface interactions. Our results demonstrate rich phase behavior obtainable from a single, highly patchy protein when interactions acting over multiple length scales are exploited and predict unusual bulk-scale properties for protein-based materials that ensue from such control.

     
    more » « less
  4. Abstract

    Carbon nanotube (CNT)‐reinforced polymer fibers have broad applications in electrical, thermal, optical, and smart applications. The key for mechanically robust fibers is the precise microstructural control of these CNTs, including their location, dispersion, and orientation. A new methodology is presented here that combines dry‐jet‐wet spinning and forced assembly for scalable fabrication of fiber composites, consisting of alternating layers of polyacrylonitrile (PAN) and CNT/PAN. The thickness of each layer is controlled during the multiplication process, with resolutions down to the nanometer scale. The introduction of alternating layers facilitates the quality of CNT dispersion due to nanoscale confinement, and at the same time, enhances their orientation due to shear stress generated at each layer interface. In a demonstration example, with 0.5 wt% CNTs loading and the inclusion of 170 nm thick layers, a composite fiber shows a significant mechanical enhancement, namely, a 46.4% increase in modulus and a 39.5% increase in strength compared to a pure PAN fiber. Beyond mechanical reinforcement, the presented fabrication method is expected to have enormous potential for scalable fabrication of polymer nanocomposites with complex structural features for versatile applications.

     
    more » « less
  5. null (Ed.)
    ABSTRACT Self-organization is ubiquitous in biology, with viruses providing an excellent illustration of bioassemblies being much more than the sum of their parts. Following nature's lead, molecular self-assembly has emerged as a new synthetic strategy in the past 3 decades or so. Self-assembly approaches promise to generate complex supramolecular architectures having molecular weights of 0.5 to 100 MDa and collective properties determined by the interplay between structural organization and composition. However, biophysical methods specific to mesoscopic self-assembly, and presentations of the challenges they aim to overcome, remain underrepresented in the educational laboratory curriculum. We present here a simple but effective model for laboratory instruction that introduces students to the world of intermolecular forces and virus assembly, and to a cutting-edge technology, atomic force microscopy nanoindentation, which is able to measure the mechanical properties of single virus shells in vitro. In addition, the model illustrates the important idea that, at nanoscale, phenomena often have an inherent interdisciplinary character. 
    more » « less