Abstract In the seminal work (Weinstein 1999Nonlinearity12673), Weinstein considered the question of the ground states for discrete Schrödinger equations with power law nonlinearities, posed on . More specifically, he constructed the so-called normalised waves, by minimising the Hamiltonian functional, for fixed powerP(i.e.l2mass). This type of variational method allows one to claim, in a straightforward manner, set stability for such waves. In this work, we revisit these questions and build upon Weinstein’s work, as well as the innovative variational methods introduced for this problem in (Laedkeet al1994Phys. Rev. Lett.731055 and Laedkeet al1996Phys. Rev.E544299) in several directions. First, for the normalised waves, we show that they are in fact spectrally stable as solutions of the corresponding discrete nonlinear Schroedinger equation (NLS) evolution equation. Next, we construct the so-called homogeneous waves, by using a different constrained optimisation problem. Importantly, this construction works for all values of the parameters, e.g.l2supercritical problems. We establish a rigorous criterion for stability, which decides the stability on the homogeneous waves, based on the classical Grillakis–Shatah–Strauss/Vakhitov–Kolokolov (GSS/VK) quantity . In addition, we provide some symmetry results for the solitons. Finally, we complement our results with numerical computations, which showcase the full agreement between the conclusion from the GSS/VK criterion vis-á-vis with the linearised problem. In particular, one observes that it is possible for the stability of the wave to change as the spectral parameterωvaries, in contrast with the corresponding continuous NLS model. 
                        more » 
                        « less   
                    
                            
                            Small-data global existence of solutions for the Pitaevskii model of superfluidity
                        
                    
    
            Abstract We investigate a micro-scale model of superfluidity derived by Pitaevskii (1959Sov. Phys. JETP8282–7) to describe the interacting dynamics between the superfluid and normal fluid phases of Helium-4. The model involves the nonlinear Schrödinger equation (NLS) and the Navier–Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. Depending on the nature of the nonlinearity in the NLS, we prove global/almost global existence of solutions to this system in —strong in wavefunction and velocity, and weak in density. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009458
- PAR ID:
- 10501282
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Nonlinearity
- Volume:
- 37
- Issue:
- 6
- ISSN:
- 0951-7715
- Format(s):
- Medium: X Size: Article No. 065009
- Size(s):
- Article No. 065009
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In the seminal work of Benjamin (1974Nonlinear Wave Motion(American Mathematical Society)), in the late 70s, he has derived the ubiquitous Benjamin model, which is a reduced model in the theory of water waves. Notably, it contains two parameters in its dispersion part and under some special circumstances, it turns into the celebrated KdV or the Benjamin–Ono equation, During the 90s, there was renewed interest in it. Benjamin (1992J. Fluid Mech.245401–11; 1996Phil. Trans. R. Soc.A3541775–806) studied the problem for existence of solitary waves, followed by works of Bona–Chen (1998Adv. Differ. Equ.351–84), Albert–Bona–Restrepo (1999SIAM J. Appl. Math.592139–61), Pava (1999J. Differ. Equ.152136–59), who have showed the existence of travelling waves, mostly by variational, but also bifurcation methods. Some results about the stability became available, but unfortunately, those were restricted to either small waves or Benjamin model, close to a distinguished (i.e. KdV or BO) limit. Quite recently, in 2024 (arXiv:2404.04711 [math.AP]), Abdallahet al, proved existence, orbital stability and uniqueness results for these waves, but only for large values of . In this article, we present an alternative constrained maximization procedure for the construction of these waves, for the full range of the parameters, which allows us to ascertain their spectral stability. Moreover, we extend this construction to allL2subcritical cases (i.e. power nonlinearities , ). Finally, we propose a different procedure, based on a specific form of the Sobolev embedding inequality, which works for all powers , but produces some unstable waves, for largep. Some open questions and a conjecture regarding this last result are proposed for further investigation.more » « less
- 
            Abstract We studyℓ∞norms ofℓ2-normalized eigenfunctions of quantum cat maps. For maps with short quantum periods (constructed by Bonechi and de Biévre in F Bonechi and S De Bièvre (2000,Communications in Mathematical Physics,211, 659–686)) we show that there exists a sequence of eigenfunctionsuwith . For general eigenfunctions we show the upper bound . Here the semiclassical parameter is . Our upper bound is analogous to the one proved by Bérard in P Bérard (1977,Mathematische Zeitschrift,155, 249-276) for compact Riemannian manifolds without conjugate points.more » « less
- 
            Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrum with the Green’s function , which describes the monoenergetic spectrum solution in which asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution for . In this paper, we explore for the first time, solutions for more general and realistic forms for . The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering time in the shear flow region 0 <r<r2, and , wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution that particles observed at (r,p) originated fromr→ ∞ with momentum . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described.more » « less
- 
            Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ that vanish to order at least$$\tau _jp$$ along$$\Sigma _j$$ ,$$1\le j\le \ell $$ . If$$Y\subset X$$ is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ of holomorphic sections of$$L^p|_Y$$ that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ . Assuming that the triplet$$(L,\Sigma ,\tau )$$ is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ as$$p\rightarrow \infty $$ .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
