skip to main content


Title: Seasonal and spatial patterns in diazotroph community composition at Station ALOHA

Dinitrogen (N2) fixation is carried out by specialized microbes, called diazotrophs, and is a major source of nitrogen supporting primary production in oligotrophic oceans. One of the best-characterized diazotroph habitats is the North Pacific Subtropical Gyre (NPSG), where warm, chronically N-limited surface waters promote year-round N2fixation. At Station ALOHA (A Long-Term Oligotrophic Habitat Assessment) in the NPSG, N2fixation is typically ascribed to conspicuous, filamentous cyanobacterial diazotrophs (TrichodesmiumandRichelia), unicellular free-livingCrocosphaera, and the UCYN-A/haptophyte symbiosis, based on using microscopy and quantitative PCR (qPCR). However, the diazotroph community in this ecosystem is diverse and includes non-cyanobacterial diazotrophs (NCDs). We investigated the diversity, depth distributions, and seasonality of diazotroph communities at Stn. ALOHA using high throughput sequencing (HTS) ofnifHgene fragments from samples collected throughout the euphotic zone (0-175 m) at near-monthly intervals from June 2013 to July 2016. The UCYN-A symbioses andTrichodesmiumsp. consistently had the highest relative abundances and seasonal patterns that corroborated qPCR-based analyses. Other prevalent community members included a newCrocosphaera-like species, and several NCDs affiliated with γ- and δ-proteobacteria. Notably, some of the NCDs appear to be stable components of the community at Stn. ALOHA, having also been reported in prior studies. Depth and temporal patterns in microdiversity within two major diazotroph groups (Trichodesmiumand UCYN-A) suggested that sub-populations are adapted to time- and depth-dependent environmental variation. A network analysis of the upper euphotic (0-75 m) HTS data identified two modules that reflect a diazotroph community structure with seasonal turnover between UCYN-A/Gamma A, andTrichodesmium/Crocosphaera. It also reveals the seasonality of several important cyanobacteria and NCDs about which little is known, including a putative δ-proteobacterial phylotype originally discovered at Stn. ALOHA. Collectively, these results underscore the importance of couplingnifHgene HTS with other molecular techniques to obtain a comprehensive view of diazotroph community composition in the marine environment and reveal several understudied diazotroph groups that may contribute to N2fixation in the NPSG.

 
more » « less
Award ID(s):
2023498 2241005
PAR ID:
10501327
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
10
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inputs of new nitrogen by cyanobacterial diazotrophs are critical to ocean ecosystem structure and function. Relative to other ocean regions, there is a lack of data on the distribution of these microbes in the western South Atlantic. Here, the abundance of six diazotroph phylotypes: Trichodesmium , Crocosphaera , UCYN-A, Richelia associated with Rhizosolenia (Het-1) or Hemiaulus (Het-2), and Calothrix associated with Chaetoceros (Het-3) was measured by quantitative PCR (qPCR) of the nifH gene along a transect extending from the shelf-break to the open ocean along the Vitória-Trindade seamount chain (1200 km). Using nifH gene copies as a proxy for phylotype abundance, Crocosphaera signals were the most abundant, with a broad distribution throughout the study region. Trichodesmium signals were the second most abundant, with the greatest numbers confined to the warmer waters closer to the coast, and a significant positive correlation with temperature. The average signals for the host-associated diazotrophs (UCYN-A, Het-1, and Het-2) were consistently lower than for the other phylotypes. These findings expand measurements of cyanobacterial diazotroph distribution in the western South Atlantic, and provide a new resource to enhance modeling studies focused on patterns of nitrogen fixation in the global ocean. 
    more » « less
  2. Abstract

    Nitrogen availability limits marine productivity across large ocean regions. Diazotrophs can supply new nitrogen to the marine environment via nitrogen (N2) fixation, relieving nitrogen limitation. The distributions of diazotrophs and N2 fixation have been hypothesized to be generally controlled by temperature, phosphorus, and iron availability in the global ocean. However, even in the North Atlantic where most research on diazotrophs and N2 fixation has taken place, environmental controls remain contentious. Here we measure diazotroph composition, abundance, and activity at high resolution using newly developed underway sampling and sensing techniques. We capture a diazotrophic community shift from Trichodesmium to UCYN-A between the oligotrophic, warm (25–29 °C) Sargasso Sea and relatively nutrient-enriched, cold (13–24 °C) subpolar and eastern American coastal waters. Meanwhile, N2 fixation rates measured in this study are among the highest ever recorded globally and show significant increase with phosphorus availability across the transition from the Gulf Stream into subpolar and coastal waters despite colder temperatures and higher nitrate concentrations. Transcriptional patterns in both Trichodesmium and UCYN-A indicate phosphorus stress in the subtropical gyre. Over this iron-replete transect spanning the western North Atlantic, our results suggest that temperature is the major factor controlling the diazotrophic community structure while phosphorous drives N2 fixation rates. Overall, the occurrence of record-high UCYN-A abundance and peak N2 fixation rates in the cold coastal region where nitrate concentrations are highest (~200 nM) challenges current paradigms on what drives the distribution of diazotrophs and N2 fixation.

     
    more » « less
  3. ABSTRACT Mixotrophy, the combination of heterotrophic and autotrophic nutrition modes, is emerging as the rule rather than the exception in marine photosynthetic plankton. Trichodesmium, a prominent diazotroph ubiquitous in the (sub)tropical oceans, is generally considered to obtain energy via autotrophy. While the ability of Trichodesmium to use dissolved organic phosphorus when deprived of inorganic phosphorus sources is well known, the extent to which this important cyanobacterium may benefit from other dissolved organic matter (DOM) resources is unknown. Here we provide evidence of carbon-, nitrogen- and phosphorus-rich DOM molecules enhancing N2 fixation rates and nifH gene expression in natural Trichodesmium colonies collected at two stations in the western tropical South Pacific. Sampling at a third station located in the oligotrophic South Pacific Gyre revealed no Trichodesmium but showed presence of UCYN-B, although no nifH expression was detected. Our results suggest that Trichodesmium behaves mixotrophically in response to certain environmental conditions, providing them with metabolic plasticity and adding up to the view that mixotrophy is widespread among marine microbes. 
    more » « less
  4. Abstract

    Dinitrogen (N2) fixation represents a key source of reactive nitrogen in marine ecosystems. While the process has been rather well-explored in low latitudes of the Atlantic and Pacific Oceans, other higher latitude regions and particularly the Indian Ocean have been chronically overlooked. Here, we characterize N2 fixation and diazotroph community composition across nutrient and trace metals gradients spanning the multifrontal system separating the oligotrophic waters of the Indian Ocean subtropical gyre from the high nutrient low chlorophyll waters of the Southern Ocean. We found a sharp contrasting distribution of diazotroph groups across the frontal system. Notably, cyanobacterial diazotrophs dominated north of fronts, driving high N2 fixation rates (up to 13.96 nmol N l−1 d−1) with notable peaks near the South African coast. South of the fronts non-cyanobacterial diazotrophs prevailed without significant N2 fixation activity being detected. Our results provide new crucial insights into high latitude diazotrophy in the Indian Ocean, which should contribute to improved climate model parameterization and enhanced constraints on global net primary productivity projections.

     
    more » « less
  5. Abstract. The western tropical South Pacific (WTSP) Ocean has been recognized as a global hot spot of dinitrogen (N2) fixation. Here, as in other marine environments across the oceans, N2 fixation studies have focused on the sunlit layer. However, studies have confirmed the importance of aphotic N2 fixation activity, although until now only one had been performed in the WTSP. In order to increase our knowledge of aphotic N2 fixation in the WTSP, we measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. Because non-cyanobacterial diazotrophs presumably need external dissolved organic matter (DOM) sources for their nutrition, we also identified DOM compounds using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with the aim of searching for relationships between the composition of DOM and non-cyanobacterial N2 fixation in the aphotic ocean. N2 fixation rates were low (average 0.63±0.07nmolNL−1d−1) but consistently detected across all depths and stations, representing ∼ 6–88% of photic N2 fixation. N2 fixation rates were not significantly correlated with DOM compounds. The analysis of nifH gene amplicons revealed a wide diversity of non-cyanobacterial diazotrophs, mostly matching clusters 1 and 3. Interestingly, a distinct phylotype from the major nifH subcluster 1G dominated at 650dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW). This consistent pattern suggests that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure. While the data available are still too scarce to elucidate the distribution and controls of mesopelagic non-cyanobacterial diazotrophs in the WTSP, their prevalence in the mesopelagic layer and the consistent detection of active N2 fixation activity at all depths sampled during our study suggest that aphotic N2 fixation may contribute significantly to fixed nitrogen inputs in this area and/or areas downstream of water mass circulation.

     
    more » « less